A fully implicit model for simulating dynamo action in a Cartesian domain

Abstract We present a fully implicit numerical method to solve the incompressible MHD equations in a strongly rotating Cartesian domain. The equations are solved in a primitive variable formulation using a finite volume discretization. In order to use massively parallel computers, we applied a domain decomposition approach in space. The performance of this model is compared with an earlier model, which treated the convective terms of the equations in an explicit manner. Our results indicate that although the fully implicit method needs about three times the memory of the implicit–explicit method, it is superior in terms of computational efficiency. As an application of this model, we investigated the influence of the Prandtl number in the range of 0.01–1000 on the dynamics of the dynamo.

[1]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[2]  Akira Kageyama,et al.  Generation mechanism of a dipole field by a magnetohydrodynamic dynamo , 1997 .

[3]  P. Roberts,et al.  Convection-driven dynamos in a rotating plane layer , 2000, Journal of Fluid Mechanics.

[4]  Ulrich R. Christensen,et al.  A dynamo model interpretation of geomagnetic field structures , 1998 .

[5]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[6]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985 .

[7]  M. G. S. Pierre Solar and Planetary Dynamos: The Strong Field Branch of the Childress–Soward Dynamo , 1994 .

[8]  E. Bender Numerical heat transfer and fluid flow. Von S. V. Patankar. Hemisphere Publishing Corporation, Washington – New York – London. McGraw Hill Book Company, New York 1980. 1. Aufl., 197 S., 76 Abb., geb., DM 71,90 , 1981 .

[9]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[10]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[11]  P. Roberts Future of geodynamo theory , 1988 .

[12]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[13]  S. Childress,et al.  Convection-Driven Hydromagnetic Dynamo , 1972 .

[14]  Randolph E. Bank,et al.  Transient simulation of silicon devices and circuits , 1985, IEEE Transactions on Electron Devices.

[15]  G. de Vahl Davis,et al.  Natural convection in a square cavity: A comparison exercise , 1983 .

[16]  A. Soward A convection-driven dynamo I. The weak field case , 1974, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[17]  Thomas L. Sterling,et al.  Parallel Supercomputing with Commodity Components , 1997, PDPTA.

[18]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[19]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[20]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[21]  Jeremy Bloxham,et al.  An Earth-like numerical dynamo model , 1997, Nature.