A rigorous phase separation method for testing nonlinear structures

The objective of the present paper is to develop a rigorous identification methodology of nonlinear normal modes (NNMs) of engineering structures. This is achieved by processing experimental measurements collected under broadband forcing. The use of such a type of forcing signal allows to excite multiple NNMs simultaneously and, in turn, to save testing time. A two-step methodology integrating nonlinear system identification and numerical continuation of periodic solutions is proposed for the extraction of the individual NNMs from broadband input and output data. It is demonstrated using a numerical cantilever beam possessing a cubic nonlinearity at its free end. The proposed methodology can be viewed as a nonlinear generalization of the phase separation techniques routinely utilized for experimental modal analysis of linear structures.

[1]  Alexander F. Vakakis,et al.  NONLINEAR NORMAL MODES , 2001 .

[2]  C. James Li,et al.  Non-linear system identification using lumped parameter models with embedded feedforward neural networks , 2002 .

[3]  Jean-Philippe Noël,et al.  Complex dynamics of a nonlinear aerospace structure: numerical continuation and normal modes , 2014, Nonlinear Dynamics.

[4]  R. M. Rosenberg,et al.  The Normal Modes of Nonlinear n-Degree-of-Freedom Systems , 1962 .

[5]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[6]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[7]  Walter Lacarbonara,et al.  Nonlinear normal modes of structural systems via asymptotic approach , 2004 .

[8]  Randall J. Allemang,et al.  A FREQUENCY DOMAIN METHOD FOR ESTIMATING THE PARAMETERS OF A NON-LINEAR STRUCTURAL DYNAMIC MODEL THROUGH FEEDBACK , 2000 .

[9]  Luigi Garibaldi,et al.  A time domain approach for identifying nonlinear vibrating structures by subspace methods , 2008 .

[10]  Bart De Moor,et al.  Subspace Identification for Linear Systems: Theory ― Implementation ― Applications , 2011 .

[11]  Gaëtan Kerschen,et al.  Nonlinear Modal Analysis of a Full-Scale Aircraft , 2013 .

[12]  Bruno Cochelin,et al.  Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes , 2006 .

[13]  P. Guillaume,et al.  The PolyMAX Frequency-Domain Method: A New Standard for Modal Parameter Estimation? , 2004 .

[14]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[15]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[16]  Jean-Philippe Noël,et al.  Subspace-based identification of a nonlinear spacecraft in the time and frequency domains , 2014 .

[17]  Gaëtan Kerschen,et al.  Modal testing of nonlinear vibrating structures based on nonlinear normal modes: Experimental demonstration , 2011 .

[18]  Denis Laxalde,et al.  Complex non-linear modal analysis for mechanical systems : Application to turbomachinery bladings with friction interfaces , 2009 .

[19]  L. Renson,et al.  An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems , 2014, Meccanica.

[20]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[21]  Jean-Philippe Noël,et al.  Grey-box identification of a non-linear solar array structure using cubic splines , 2014 .

[22]  G. Kerschen,et al.  Dynamic testing of nonlinear vibrating structures using nonlinear normal modes , 2011 .

[23]  Jörg Wallaschek,et al.  A method for nonlinear modal analysis and synthesis: Application to harmonically forced and self-excited mechanical systems , 2013, ArXiv.

[24]  Marc Böswald,et al.  Ground Vibration Testing of Large Aircraft - State-of-the-Art and Future Perspectives , 2007 .

[25]  Jonathan E. Cooper,et al.  NORMAL-MODE FORCE APPROPRIATION—THEORY AND APPLICATION , 1999 .

[26]  Gaëtan Kerschen,et al.  Identification of a continuous structure with a geometrical non-linearity. Part I: Conditioned reverse path method , 2003 .

[27]  Bart Peeters,et al.  Modern Solutions for Ground Vibration Testing of Large Aircraft , 2009 .

[28]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[29]  Marco Amabili,et al.  Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures , 2006 .

[30]  Fabrice Thouverez,et al.  Presentation of the ECL Benchmark , 2003 .

[31]  Jonathan E. Cooper,et al.  Identification of a Nonlinear Wing Structure Using an Extended Modal Model , 2009 .

[32]  Anton Grillenbeck,et al.  Reliability of Experimental Modal Data Determined on Large Spaceflight Structures , 2011 .