Dynamic receptor superstructures at the plasma membrane

1. INTRODUCTION 68 1.1 Receptor patterns in the plasma membrane 68 1.2 Different types of receptor patterns 71 2. METHODS TO INVESTIGATE NON-RANDOM RECEPTOR CLUSTERING 73 2.1 Fluorescence resonance energy transfer 73 2.2 Flow cytometric energy transfer measurement 78 2.3 Fluorescence anisotropy and energy transfer 79 2.4 Photobleaching energy transfer on single cells 81 2.5 Two-dimensional mapping of receptor superstructures 82 2.6 Detecting single receptor molecules 85 2.7 Chemical identification of receptor clusters 86 2.8 Electron microscopy 87 2.9 Scanning force microscopy 88 3. CONFORMATIONAL STATES OF RECEPTORS 90 3.1 Multi-subunit receptor structures 90 3.2 Physical parameters influencing conformational states 91 3.3 Chemical interactions and receptor conformations 92 4. ON THE ORIGIN OF NATURALLY OCCURRING RECEPTOR CLUSTERS 93 4.1 Synthesis of receptors and their localization in the plasma membrane 93 4.2 Lipid domain structure of the plasma membrane 94 4.3 The validity of the SingerNicolson model 94 5. CONCLUSIONS 96 6. ACKNOWLEDGEMENTS 96 7. REFERENCES 97

[1]  R. Clegg Fluorescence resonance energy transfer. , 2020, Current opinion in biotechnology.

[2]  T. Jovin,et al.  Scanning force microscopy of chromatin fibers in air and in liquid. , 2006, Scanning.

[3]  T M Jovin,et al.  Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. , 1996, The EMBO journal.

[4]  W. Webb,et al.  Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. , 1996, Biophysical journal.

[5]  M. Radmacher,et al.  Protein tracking and detection of protein motion using atomic force microscopy. , 1996, Biophysical journal.

[6]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[7]  N. Thompson,et al.  Imaging fluorescence correlation spectroscopy: nonuniform IgE distributions on planar membranes. , 1996, Biophysical journal.

[8]  T. Jovin,et al.  Proximity relationships between the type I receptor for Fcεe (FcεeRI) and the mast cell function‐associated antigen (MAFA) studied by donor photobleaching fluorescence resonance energy transfer microscopy , 1996, European journal of immunology.

[9]  L. S. Cram,et al.  Simultaneous dual-frequency phase-sensitive flow cytometric measurements for rapid identification of heterogeneous fluorescence decays in fluorochrome-labeled cells and particles. , 1995, Cytometry.

[10]  R. T. Tregear,et al.  Movement and force produced by a single myosin head , 1995, Nature.

[11]  M. Hallett,et al.  Exogenous glycosyl phosphatidylinositol-anchored CD59 associates with kinases in membrane clusters on U937 cells and becomes Ca(2+)-signaling competent , 1995, The Journal of cell biology.

[12]  R Y Tsien,et al.  Voltage sensing by fluorescence resonance energy transfer in single cells. , 1995, Biophysical journal.

[13]  J. Pober,et al.  Hydrogen peroxide-induced endothelial retraction is accompanied by a loss of the normal spatial organization of endothelial cell adhesion molecules. , 1995, The American journal of pathology.

[14]  C. Lee,et al.  A general model of invariant chain association with class II major histocompatibility complex proteins. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Damjanovich,et al.  Beta-scorpion toxin 2 from Centruroides noxius blocks voltage-gated K+ channels in human lymphocytes. , 1995, Biochemical and biophysical research communications.

[16]  D. Braunstein,et al.  Large secretory structures at the cell surface imaged with scanning force microscopy. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  S. Smerdon,et al.  Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways , 1995, Nature.

[18]  R. Liddington,et al.  Crystal structure of the zeta isoform of the 14-3-3 protein , 1995, Nature.

[19]  A. Smolyar,et al.  Oligomerization of CD4 is required for stable binding to class II major histocompatibility complex proteins but not for interaction with human immunodeficiency virus gp120. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Ameloot,et al.  Plasma‐membrane‐Bound mcromoleculas are dynamically aggregated to form non‐random codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions? , 1995, Journal of molecular recognition : JMR.

[21]  K. Jacobson,et al.  Revisiting the fluid mosaic model of membranes. , 1995, Science.

[22]  T M Jovin,et al.  Oligomerization of epidermal growth factor receptors on A431 cells studied by time-resolved fluorescence imaging microscopy. A stereochemical model for tyrosine kinase receptor activation , 1995, The Journal of cell biology.

[23]  I. T. Young,et al.  Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. , 1995, Biophysical journal.

[24]  S. Caplan,et al.  Cell-surface-expressed T-cell antigen-receptor zeta chain is associated with the cytoskeleton. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[25]  A. Lanzavecchia,et al.  Serial triggering of many T-cell receptors by a few peptide–MHC complexes , 1995, Nature.

[26]  A. V. Grimstone Molecular biology of the cell (3rd edn) , 1995 .

[27]  J. Brugge,et al.  Integrins and signal transduction pathways: the road taken. , 1995, Science.

[28]  T. Waldmann,et al.  Phenotypic knockout of the high-affinity human interleukin 2 receptor by intracellular single-chain antibodies against the alpha subunit of the receptor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Kiwamu Saito,et al.  Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution , 1995, Nature.

[30]  O. Majdic,et al.  Urokinase plasminogen activator receptor, beta 2-integrins, and Src- kinases within a single receptor complex of human monocytes , 1995, The Journal of experimental medicine.

[31]  T. Jovin,et al.  Immobilization of molecules, membranes and cells for modern optical and non-optical microscopy by photo-cross-linking , 1995 .

[32]  D. Wiley,et al.  The three-dimensional structure of a class I major histocompatibility complex molecule missing the alpha 3 domain of the heavy chain. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[33]  T M Jovin,et al.  Structural hierarchy in the clustering of HLA class I molecules in the plasma membrane of human lymphoblastoid cells. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[34]  N. Unwin Acetylcholine receptor channel imaged in the open state , 1995, Nature.

[35]  L. Mátyus,et al.  Distinct association of transferrin receptor with HLA class I molecules on HUT-102B and JY cells. , 1995, Immunology letters.

[36]  T. Jovin,et al.  The scanning force microscopy of DNA in air and in n‐propanol using new spreading agents , 1994, FEBS letters.

[37]  D. Ypey,et al.  Effects of bretylium tosylate on voltage-gated potassium channels in human T lymphocytes. , 1994, Molecular pharmacology.

[38]  V. Hořejší,et al.  Association of the GPI-anchored leucocyte surface glycoproteins with ganglioside GM3. , 1994, Biochemical and biophysical research communications.

[39]  J A Steinkamp,et al.  Fluorescence lifetime measurements in a flow cytometer by amplitude demodulation using digital data acquisition technique. , 1994, Cytometry.

[40]  J. Möst,et al.  Lateral organization of the ICAM‐1 molecule at the surface of human lymphoblasts: A possible model for its co‐distribution with the IL‐2 receptor, class I and class II HLA molecules , 1994, European journal of immunology.

[41]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy: pixel-by-pixel analysis of phase-modulation data , 1994 .

[42]  R. Young,et al.  Quantitation of fluorescence energy transfer between cell surface proteins via fluorescence donor photobleaching kinetics. , 1994, Biophysical journal.

[43]  M. Eigen,et al.  Sorting single molecules: application to diagnostics and evolutionary biotechnology. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  D. Engelman,et al.  Specificity and promiscuity in membrane helix interactions , 1994, FEBS letters.

[45]  M. Radmacher,et al.  Granula motion and membrane spreading during activation of human platelets imaged by atomic force microscopy. , 1994, Biophysical journal.

[46]  V. Mekler A PHOTOCHEMICAL TECHNIQUE TO ENHANCE SENSITIVITY OF DETECTION OF FLUORESCENCE RESONANCE ENERGY TRANSFER , 1994 .

[47]  D. Engelman,et al.  Specificity and promiscuity in membrane helix interactions , 1994, Quarterly Reviews of Biophysics.

[48]  M. Sheetz,et al.  Truncation mutants define and locate cytoplasmic barriers to lateral mobility of membrane glycoproteins. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Brand,et al.  Resonance energy transfer: methods and applications. , 1994, Analytical biochemistry.

[50]  J. Spudich,et al.  Single myosin molecule mechanics: piconewton forces and nanometre steps , 1994, Nature.

[51]  H. Mcconnell,et al.  Electric field-induced concentration gradients in lipid monolayers. , 1994, Science.

[52]  R Hegerl,et al.  Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Robert M. Clegg,et al.  Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale , 1993 .

[54]  A. Engel,et al.  Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. , 1993, Biophysical journal.

[55]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[56]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[57]  M. Ameloot,et al.  Mapping of cell surface protein-patterns by combined fluorescence anisotropy and energy transfer measurements. , 1993, Journal of photochemistry and photobiology. B, Biology.

[58]  Jan Greve,et al.  Atomic force microscopy combined with confocal laser scanning microscopy: a new look at cells , 1993 .

[59]  T. Taniguchi,et al.  The IL-2 IL-2 receptor system: A current overview , 1993, Cell.

[60]  V. Hořejší,et al.  Large, detergent‐resistant complexes containing murine antigens Thy‐1 and Ly‐6 and protein tyrosine kinase p56lck , 1993, European journal of immunology.

[61]  M. Berridge Inositol trisphosphate and calcium signalling , 1993, Nature.

[62]  M. Edidin Patches, posts and fences: proteins and plasma membrane domains. , 1992, Trends in cell biology.

[63]  J. Weaver,et al.  CD4 changes conformation upon ligand binding. , 1992, Journal of immunology.

[64]  Don C. Wiley,et al.  Atomic structure of a human MHC molecule presenting an influenza virus peptide , 1992, Nature.

[65]  William S. Lane,et al.  Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle , 1992, Nature.

[66]  Peter Parham,et al.  Deconstructing the MHC , 1992, Nature.

[67]  M. Falasca,et al.  Bretylium-induced voltage-gated sodium current in human lymphocytes. , 1992, Biochimica et biophysica acta.

[68]  V. Hořejší,et al.  The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. , 1992, Journal of immunology.

[69]  R. Cherry Keeping track of cell surface receptor. , 1992, Trends in cell biology.

[70]  L. Mátyus,et al.  Dynamic physical interactions of plasma membrane molecules generate cell surface patterns and regulate cell activation processes. , 1992, Immunobiology.

[71]  N. Tanaka,et al.  Cloning of the gamma chain of the human IL-2 receptor. , 1992, Science.

[72]  H Szmacinski,et al.  Fluorescence lifetime imaging. , 1992, Analytical biochemistry.

[73]  Jan Greve,et al.  New imaging mode in atomic-force microscopy based on the error signal , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[74]  David R. Sandison,et al.  Time-resolved fluorescence imaging and background rejection by two-photon excitation in laser-scanning microscopy , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[75]  Thomas M. Jovin,et al.  Time-resolved imaging fluorescence microscopy , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[76]  J. Möst,et al.  Regulation of the expression of ICAM-1 on human monocytes and monocytic tumor cell lines. , 1992, Journal of immunology.

[77]  P S Pine,et al.  Epitope mapping by photobleaching fluorescence resonance energy transfer measurements using a laser scanning microscope system. , 1992, Biophysical journal.

[78]  L. Mátyus New trends in photobiology: Fluorescence resonance energy transfer measurements on cell surfaces. A spectroscopic tool for determining protein interactions , 1992 .

[79]  M Edidin,et al.  Lateral movements of membrane glycoproteins restricted by dynamic cytoplasmic barriers. , 1991, Science.

[80]  W. Knapp,et al.  GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. , 1991, Science.

[81]  V. Hořejší,et al.  Association of the CD59 and CD55 cell surface glycoproteins with other membrane molecules. , 1991, Journal of immunology.

[82]  J. Szõllõsi,et al.  Proximity measurements between H-2 antigens and the insulin receptor by fluorescence energy transfer: evidence that a close association does not influence insulin binding. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[83]  B. Feuerstein,et al.  Fluorescent tetradecanoylphorbol acetate: A novel probe of phorbol ester binding domains , 1991, Journal of cellular biochemistry.

[84]  S. Damjanovich,et al.  Electroimmunology: Membrane Potential, Ion‐Channel Activities, and Stimdatory Signal Transduction in Human T Lymphocytes horn Young and Elderly , 1991, Annals of the New York Academy of Sciences.

[85]  T. Elliott,et al.  Peptide-induced conformational change of the class I heavy chain , 1991, Nature.

[86]  T. Waldmann,et al.  The interleukin-2 receptor. , 1991, The Journal of biological chemistry.

[87]  P. Devaux,et al.  Static and dynamic lipid asymmetry in cell membranes. , 1991, Biochemistry.

[88]  A. Tunnacliffe,et al.  Structure of the T cell antigen receptor (TCR): two CD3 epsilon subunits in a functional TCR/CD3 complex , 1991, The Journal of experimental medicine.

[89]  A. Martonosi,et al.  Structural dynamics of the Ca2(+)-ATPase of sarcoplasmic reticulum. Temperature profiles of fluorescence polarization and intramolecular energy transfer. , 1990, Biochimica et biophysica acta.

[90]  D. Bar-Sagi,et al.  Co-capping of ras proteins with surface immunoglobulins in B lymphocytes , 1990, Nature.

[91]  T. Waldmann,et al.  Association of intercellular adhesion molecule 1 with the multichain high-affinity interleukin 2 receptor. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[92]  J. Bonifacino,et al.  Transmembrane helical interactions and the assembly of the T cell receptor complex. , 1990, Science.

[93]  J. Massagué,et al.  Cell-cell adhesion mediated by binding of membrane-anchored transforming growth factor alpha to epidermal growth factor receptors promotes cell proliferation. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[94]  N. Hogg,et al.  Human memory T cells express intercellular adhesion molecule‐1 which can be increased by interleukin 2 and interferon‐γ , 1990, European journal of immunology.

[95]  Robert M. Clegg,et al.  SENSITIVE AND RAPID DETERMINATIONS OF FLUORESCENCE LIFETIMES IN THE FREQUENCY-DOMAIN IN A LIGHT-MICROSCOPE , 1990 .

[96]  T. E. Thompson,et al.  Translational diffusion and fluid domain connectivity in a two-component, two-phase phospholipid bilayer. , 1989, Biophysical journal.

[97]  S. Goldman,et al.  T-cell receptor-CD4 physical association in a murine T-cell hybridoma: induction by antigen receptor ligation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[98]  J. Tocanne,et al.  Lipid lateral diffusion and membrane organization , 1989, FEBS letters.

[99]  T A Rapoport,et al.  Predicting the orientation of eukaryotic membrane-spanning proteins. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[100]  S. Damjanovich,et al.  Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. , 1989, Journal of immunology.

[101]  S. Damjanovich,et al.  Ligand and voltage gated sodium channels may regulate electrogenic pump activity in human, mouse and rat lymphocytes. , 1989, Biochemical and biophysical research communications.

[102]  H. Asao,et al.  Monoclonal antibody defining a molecule possibly identical to the p75 subunit of interleukin 2 receptor , 1989, The Journal of experimental medicine.

[103]  D. Muller,et al.  Momentary alteration of the postsynaptic membrane during transmission of a single nerve impulse. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[104]  P. Fromherz Self-organization of the fluid mosaic of charged channel proteins in membranes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[105]  S. Damjanovich,et al.  Proximity measurements of cell surface proteins by fluorescence energy transfer. , 1987, Immunology letters.

[106]  L. Mátyus,et al.  Flow cytometric measurements of fluorescence energy transfer using single laser excitation. , 1987, Cytometry.

[107]  L. Mátyus,et al.  Accessibility of cell surface thiols in human lymphocytes is altered by ionophores or OKT-3 antibody. , 1986, Biochemical and biophysical research communications.

[108]  J. Beckwith,et al.  A genetic approach to analyzing membrane protein topology. , 1986, Science.

[109]  T. Waldmann The structure, function, and expression of interleukin-2 receptors on normal and malignant lymphocytes. , 1986, Science.

[110]  P. Devaux,et al.  Specificity of lipid-protein interactions as determined by spectroscopic techniques. , 1985, Biochimica et biophysica acta.

[111]  G R Welch,et al.  Förster-type energy transfer as a probe for changes in local fluctuations of the protein matrix. , 1984, Biochemistry.

[112]  T. Jovin,et al.  Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. , 1984, Cytometry.

[113]  T. Jovin,et al.  Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[114]  T M Jovin,et al.  Rotational diffusion of epidermal growth factor complexed to cell surface receptors reflects rapid microaggregation and endocytosis of occupied receptors. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[115]  J. Lakowicz,et al.  Phase-sensitive fluorescence spectroscopy: a new method to resolve fluorescence lifetimes or emission spectra of components in a mixture of fluorophores. , 1981, Journal of biochemical and biophysical methods.

[116]  J. Eisinger,et al.  The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. , 1979, Biophysical journal.

[117]  L. Flaherty,et al.  Surface mapping of mouse thymocytes. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[118]  T. Jovin,et al.  Proximity of lectin receptors on the cell surface measured by fluorescence energy transfer in a flow system. , 1979, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[119]  T. Wei,et al.  Diffusion rates of cell surface antigens of mouse-human heterokaryons. II. Effect of membrane potential on lateral diffusion , 1977, The Journal of cell biology.

[120]  S. Fernandez,et al.  Cell surface distribution of lectin receptors determined by resonance energy transfer , 1976, Nature.

[121]  M. Ehrenberg,et al.  Fluorescence relaxation spectroscopy in the analysis of macromolecular structure and motion , 1976, Quarterly Reviews of Biophysics.

[122]  Måns Ehrenberg,et al.  Rotational brownian motion and fluorescence intensify fluctuations , 1974 .

[123]  E. Elson,et al.  Fluorescence correlation spectroscopy. I. Conceptual basis and theory , 1974 .

[124]  M. Edidin,et al.  The rapid intermixing of cell surface antigens after formation of mouse-human heterokaryons. , 1970, Journal of cell science.

[125]  L. Old,et al.  An approach to the mapping of antigens on the cell surface. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[126]  J. Danielli,et al.  PERMEABILITY OF NATURAL MEMBRANES , 1953 .

[127]  Abraham White,et al.  The Permeability of Natural Membranes , 1944, The Yale Journal of Biology and Medicine.

[128]  T. Jovin,et al.  Detergent spreading of DNA on mica using nonionic and cationic detergents , 1998 .

[129]  P. Selvin Fluorescence resonance energy transfer. , 1995, Methods in enzymology.

[130]  Jerker Widengren,et al.  Interactions and Kinetics of Single Molecules as Observed by Fluorescence Correlation Spectroscopy , 1993 .

[131]  J A Steinkamp,et al.  Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry. , 1993, Cytometry.

[132]  T M Jovin,et al.  Distribution of type I Fc epsilon-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. , 1993, Biophysical journal.

[133]  T. Waldmann,et al.  Immune receptors: targets for therapy of leukemia/lymphoma, autoimmune diseases and for the prevention of allograft rejection. , 1992, Annual review of immunology.

[134]  J. Lippincott-Schwartz,et al.  The T cell antigen receptor: insights into organelle biology. , 1990, Annual review of cell biology.

[135]  T M Jovin,et al.  Luminescence digital imaging microscopy. , 1989, Annual review of biophysics and biophysical chemistry.

[136]  Thomas M. Jovin,et al.  FRET Microscopy: Digital Imaging of Fluorescence Resonance Energy Transfer. Application in Cell Biology , 1989 .

[137]  M. Edidin Function by association? MHC antigens and membrane receptor complexes. , 1988, Immunology today.

[138]  R. Astumian,et al.  Electroconformational coupling and membrane protein function. , 1987, Progress in biophysics and molecular biology.

[139]  L Trón,et al.  Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: a critical review. , 1987, Progress in biophysics and molecular biology.

[140]  D. Muller,et al.  Brief occurrence of a population of presynaptic intramembrane particles coincides with transmission of a nerve impulse. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[142]  B. Somogyi,et al.  MACROMOLECULAR DYNAMICS AND INFORMATION TRANSFER , 1981 .

[143]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.

[144]  B. Satir Genetic control of membrane mosaicism. , 1976, Journal of supramolecular structure.

[145]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[146]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[147]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .