The Zwicky Transient Facility: Science Objectives

The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg^2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r ~ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.

Umaa Rebbapragada | Richard Walters | Adam A. Miller | Anna Y. Q. Ho | Daniel A. Goldstein | W. Thomas Vestrand | Richard Dekany | Shai Kaspi | Ashish A. Mahabal | Thomas A. Prince | Matthew J. Graham | V. Zach Golkhou | Rick Burruss | Jesper Sollerman | Mansi M. Kasliwal | Eran O. Ofek | Zeljko Ivezic | Dmitry A. Duev | Francesco Taddia | Andrew Connolly | Lynne A. Hillenbrand | George Helou | Mario Juric | James Bauer | Hector Rodriguez | David Imel | Peter Nugent | Suvi Gezari | Sjoert van Velzen | Stephen Kaye | Eric C. Bellm | Frank J. Masci | Brian Bue | Bryce Bolin | S. R. Kulkarni | Peter Mao | Reed Riddle | Dennis Bodewits | Quan-Zhi Ye | Daniela Huppenkothen | Walter Landry | David L. Shupe | Paula Szkody | Ulrich Feindt | Steve Schulze | Russ R. Laher | Jan van Roestel | Kevin Burdge | Chan-Kao Chang | Ragnhild Lunnan | Ben Rusholme | Maayane T. Soumagnac | Christoffer Fremling | Maria T. Patterson | Jeffry Zolkower | Mickael Rigault | Ariel Goobar | Igor Andreoni | Rahul Biswas | Nadejda Blagorodnova | Jason Surace | Wing-Huen Ip | Virginia Cunningham | Jakob Nordin | David Hover | Justin Belicki | Scott Terek | Eugean Hacopians | Scott M. Adams | Thomas Kupfer | Chow-Choong Ngeow | Patrick R. Brady | Michael W. Coughlin | S. Bradley Cenko | John Cromer | Lin Yan | Vandana Desai | David L. Kaplan | Gwendolyn Eadie | Serge Monkewitz | Justin Howell | Anna Franckowiak | Marek Kowalski | Jakob van Santen | Mattia Bulla | Tony L. Farnham | Bryan Penprase | Leo P. Singer | Po-Chieh Yu | Kishalay De | Tiara Hung | David Hale | Emily Kramer | Charlotte Ward | A. Mahabal | M. Graham | S. Gezari | E. Ofek | A. Connolly | Ž. Ivezić | J. Sollerman | L. Singer | I. Andreoni | R. Biswas | P. Brady | M. Coughlin | A. Franckowiak | M. Kowalski | J. Santen | Shaon Ghosh | P. Nugent | D. Goldstein | M. Soumagnac | D. Kaplan | K. De | M. Kasliwal | S. Kulkarni | E. Bellm | P. Szkody | S. Schulze | S. Cenko | A. Gal-yam | J. Bauer | B. Bolin | A. Goobar | U. Feindt | J. Nordin | M. Rigault | R. Burruss | R. Dekany | L. Hillenbrand | R. Laher | R. Lunnan | C. Ngeow | B. Bue | C. Fremling | F. Masci | F. Taddia | U. Rebbapragada | R. Walters | N. Blagorodnova | J. Roestel | Q. Ye | K. Burdge | Chan-Kao Chang | D. Duev | V. Golkhou | C. Ward | S. Adams | T. Hung | T. Kupfer | Hsing-Wen Lin | T. Prince | R. Riddle | B. Rusholme | D. Shupe | S. Velzen | J. Surace | W. Ip | G. Helou | T. Barlow | D. Hale | J. Henning | J. Zolkower | Roger M. Smith | D. Bodewits | M. Kelley | R. Beck | J. Howell | T. Farnham | S. Kaspi | M. Bulla | P. Yu | A. Ho | Michael E. Porter | D. Reiley | H. Rodriguez | V. Cunningham | B. Penprase | J. Belicki | S. Kaye | W. Landry | W. Vestrand | Lin Yan | T. Brooke | D. Huppenkothen | M. Jurić | V. Desai | D. Hover | J. Cromer | L. Rauch | Michael S. P. Kelley | E. Jackson | Cristina Barbarino | Shaon Ghosh | D. Imel | E. Kramer | R. L. Jones | Hsing Wen Lin | P. Mao | Patrick Murphy | C. Barbarino | G. Eadie | Chien-De Lee | V. Brinnel | Alexander Delacroix | Eugean Hacopians | M. Kuhn | S. Monkewitz | M. Patterson | R. Stein | Scott Terek | A. V. Sistine | Chaoran Zhang | John Henning | Roger M. Smith | Michael Porter | Patrick Murphy | Robert Stein | Valery Brinnel | Chien-De Lee | Ludwig Rauch | Avishay Gal-yam | R. Lynne Jones | Tom Barlow | Ron Beck | Tim Brooke | Alex Delacroix | Edward Jackson | Michael Kuhn | Dan Reiley | Angela van Sistine | Chaoran Zhang | S. Kulkarni | R. Smith | Roger M. Smith | S. Terek | Michael Kuhn | S. Kulkarni

[1]  C. Baltay,et al.  Evidence of Environmental Dependencies of Type Ia Supernovae from the Nearby Supernova Factory indicated by Local H$\alpha$ , 2013, 1309.1182.

[2]  Angela Van Sistine,et al.  Hunting Electromagnetic Counterparts of Gravitational-wave Events Using the Zwicky Transient Facility , 2017, 1708.06723.

[3]  E. Ofek,et al.  SN 2009ip: CONSTRAINTS ON THE PROGENITOR MASS-LOSS RATE , 2013, 1303.3894.

[4]  A. Harris,et al.  The population of near-Earth asteroids , 2000 .

[5]  Fukun Liu,et al.  TIDAL STELLAR DISRUPTIONS BY MASSIVE BLACK HOLE PAIRS. II. DECAYING BINARIES , 2010, 1012.4466.

[6]  S. Velzen On the Mass and Luminosity Functions of Tidal Disruption Flares: Rate Suppression due to Black Hole Event Horizons , 2017, 1707.03458.

[7]  David Jewitt The Active Centaurs , 2006 .

[8]  D. Bodewits,et al.  Collisional Excavation of Asteroid (596) Scheila , 2011 .

[9]  C. Tao,et al.  Understanding type Ia supernovae through their U-band spectra , 2018, Astronomy & Astrophysics.

[10]  N. Langer,et al.  ULTRA-STRIPPED TYPE Ic SUPERNOVAE FROM CLOSE BINARY EVOLUTION , 2013, 1310.6356.

[11]  Tsvi Piran,et al.  Implications of the radio and X-ray emission that followed GW170817 , 2018, 1801.09712.

[12]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[13]  Armin Rest,et al.  The Foundation Supernova Survey Motivation, design, implementation, and first data release , 2017, 1711.02474.

[14]  R. Fern'andez,et al.  Mass ejection in failed supernovae: variation with stellar progenitor , 2017, 1710.01735.

[15]  W. M. Wood-Vasey,et al.  Extending the supernova Hubble diagram to z ~ 1.5 with the Euclid space mission , 2014, 1409.8562.

[16]  S. B. Cenko,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[17]  Wei Zheng,et al.  Endurance of SN 2005ip after a decade: X-rays, radio and Hα like SN 1988Z require long-lived pre-supernova mass-loss , 2016, 1612.02011.

[18]  K. Kotake,et al.  The red supergiant and supernova rate problems: Implications for core-collapse supernova physics , 2014, 1409.0006.

[19]  D. Malesani,et al.  Rapid formation of large dust grains in the luminous supernova 2010jl , 2014, Nature.

[20]  J. Granot,et al.  A common central engine for long gamma-ray bursts and Type Ib/c supernovae , 2017, 1705.00281.

[21]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[22]  Ying Wah Teh,et al.  Time-series clustering - A decade review , 2015, Inf. Syst..

[23]  A. MacFadyen,et al.  OFF-AXIS GAMMA-RAY BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL AXISYMMETRIC HYDRODYNAMICS SIMULATION , 2010, 1006.5125.

[24]  E. Ofek,et al.  The bumpy light curve of Type IIn supernova iPTF13z over 3 years , 2017, 1703.09679.

[25]  A. Goobar,et al.  Estimating dust distances to Type Ia supernovae from colour excess time evolution , 2017, 1707.00696.

[26]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[27]  Lin Yan,et al.  The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory , 2016, 1608.01733.

[28]  D. Frail,et al.  CALCIUM-RICH GAP TRANSIENTS IN THE REMOTE OUTSKIRTS OF GALAXIES , 2011, 1111.6109.

[29]  Adam D. Myers,et al.  THE DISCOVERY OF THE FIRST “CHANGING LOOK” QUASAR: NEW INSIGHTS INTO THE PHYSICS AND PHENOMENOLOGY OF ACTIVE GALACTIC NUCLEI , 2014, 1412.2136.

[30]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[31]  M. Sullivan,et al.  TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.

[32]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[33]  Robert Jedicke,et al.  Super-catastrophic disruption of asteroids at small perihelion distances , 2016, Nature.

[34]  G. Merino,et al.  The IceCube Realtime Alert System , 2016, 1612.06028.

[35]  S. Gezari,et al.  THE DETECTION RATE OF EARLY UV EMISSION FROM SUPERNOVAE: A DEDICATED GALEX/PTF SURVEY AND CALIBRATED THEORETICAL ESTIMATES , 2014, 1412.4063.

[36]  E. Ofek,et al.  An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.

[37]  D. Frail,et al.  A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817 , 2017, Nature.

[38]  Y. Mellier,et al.  UltraVISTA: a new ultra-deep near-infrared survey in COSMOS , 2012, 1204.6586.

[39]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[40]  University of Cambridge,et al.  Stellar disruption by a supermassive black hole: is the light curve really proportional to t -5/3 ? , 2008, 0810.1288.

[41]  M. M. Kasliwal,et al.  A radio counterpart to a neutron star merger , 2017, Science.

[42]  D. Fox,et al.  On the Progenitor of SN 2005gl and the Nature of Type IIn Supernovae , 2006, astro-ph/0608029.

[43]  B. Metzger,et al.  Rates of stellar tidal disruption as probes of the supermassive black hole mass function , 2014, 1410.7772.

[44]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[45]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[46]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[47]  K. Maguire,et al.  The Volumetric Rate of Calcium-rich Transients in the Local Universe , 2018, 1804.03103.

[48]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: confirmation of a disappearing star , 2016, 1609.01283.

[49]  C. Scheidegger,et al.  Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream , 2018, 1801.07323.

[50]  Tsvi Piran,et al.  A cocoon shock breakout as the origin of the γ-ray emission in GW170817 , 2017, Monthly Notices of the Royal Astronomical Society.

[51]  A. Loeb,et al.  Prompt Tidal Disruption of Stars as an Electromagnetic Signature of Supermassive Black Hole Coalescence , 2010, 1004.4833.

[52]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[53]  M. Turatto,et al.  The Type II supernova 1988Z in MCG + 03-28-022: increasing evidence of interaction of supernova ejecta with a circumstellar wind , 1993 .

[54]  S. Taubenberger,et al.  Asymmetries in the type IIn SN 2010jl , 2010, 1011.5926.

[55]  D. Malesani,et al.  Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.

[56]  Brian D. Bue,et al.  A strong ultraviolet pulse from a newborn type Ia supernova , 2015, Nature.

[57]  D. Kasen,et al.  Rapidly fading supernovae from massive star explosions , 2013, 1309.4088.

[58]  Emily B. Fox,et al.  Interpretable VAEs for nonlinear group factor analysis , 2018, ICML 2018.

[59]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[60]  C. Tao,et al.  PTF11mnb: First analog of supernova 2005bf. Long-rising, double-peaked supernova Ic from a massive progenitor , 2018 .

[61]  J. Chiang,et al.  Fireball Loading and the Blast-Wave Model of Gamma-Ray Bursts , 1998, astro-ph/9804174.

[62]  A. V. Sergeev,et al.  Formation of asteroid pairs by rotational fission , 2010, Nature.

[63]  M. Sullivan,et al.  Supernova 2007bi as a pair-instability explosion , 2009, Nature.

[64]  David O. Jones,et al.  PS1-14bj: A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY , 2016, 1605.05235.

[65]  Enrico Bertini,et al.  Using Visual Analytics to Interpret Predictive Machine Learning Models , 2016, ArXiv.

[66]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[67]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[68]  R. Kotak,et al.  Calcium-rich gap transients: tidal detonations of white dwarfs? , 2015, 1504.05584.

[69]  J. Fuller Pre-supernova outbursts via wave heating in massive stars – I. Red supergiants , 2017, 1704.08696.

[70]  K. Masters,et al.  2MTF – VI. Measuring the velocity power spectrum , 2017, 1706.05130.

[71]  Optical and infrared spectroscopy of the type IIn SN 1998S: days 3–127 , 2000, astro-ph/0011340.

[72]  T. Piran,et al.  ARE LOW-LUMINOSITY GAMMA-RAY BURSTS GENERATED BY RELATIVISTIC JETS? , 2011, 1107.1346.

[73]  G. Lamb,et al.  GRB 170817A as a jet counterpart to gravitational wave triggerGW 170817 , 2017, 1710.05857.

[74]  K. Chambers,et al.  CO-driven Activity in Comet C/2017 K2 (PANSTARRS) , 2017, 1710.03876.

[75]  John L. Tonry,et al.  An Early Warning System for Asteroid Impact , 2010, 1011.1028.

[76]  David Merritt,et al.  REVISED RATES OF STELLAR DISRUPTION IN GALACTIC NUCLEI , 2004 .

[77]  J. Kollmeier,et al.  CALCIUM-RICH GAP TRANSIENTS: SOLVING THE CALCIUM CONUNDRUM IN THE INTRACLUSTER MEDIUM , 2013, 1401.7017.

[78]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[79]  Matthew Colless,et al.  The Taipan Galaxy Survey: Scientific Goals and Observing Strategy , 2017, Publications of the Astronomical Society of Australia.

[80]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[81]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[82]  N. Kawai,et al.  2014–2015 MULTIPLE OUTBURSTS OF 15P/FINLAY , 2016, 1609.00792.

[83]  David Polishook,et al.  Main-belt comets in the Palomar Transient Factory survey – I. The search for extendedness , 2013, 1305.7176.

[84]  G. Leloudas,et al.  Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey , 2014, 1408.4084.

[85]  A. Mahabal,et al.  Optimizing spectroscopic follow-up strategies for supernova photometric classification with active learning , 2018, Monthly Notices of the Royal Astronomical Society.

[86]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[87]  Mamoru Doi,et al.  Exploring the Variable Sky with the Sloan Digital Sky Survey , 2007, 0704.0655.

[88]  Mansi M. Kasliwal,et al.  GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES , 2015, 1508.03608.

[89]  C. Guidorzi,et al.  A Decline in the X-Ray through Radio Emission from GW170817 Continues to Support an Off-axis Structured Jet , 2018, The Astrophysical Journal.

[90]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[91]  D. A. Kann,et al.  iPTF Archival Search for Fast Optical Transients , 2017, 1712.00949.

[92]  I. Hook,et al.  Dependence of Type Ia supernova luminosities on their local environment , 2017, Astronomy & Astrophysics.

[93]  E. al.,et al.  Optical and infrared photometry of the Type IIn SN 1998S: days 11–146 , 2000, astro-ph/0006080.

[94]  A. Piro TAKING THE “UN” OUT OF “UNNOVAE” , 2013, 1304.1539.

[95]  D. Guetta,et al.  Lessons from the Short GRB 170817A: The First Gravitational-wave Detection of a Binary Neutron Star Merger , 2017, 1710.06407.

[96]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[97]  E. Fox,et al.  Dynamics of homelessness in urban America , 2017, The Annals of Applied Statistics.

[98]  E. Ofek,et al.  An extremely luminous X-ray outburst at the birth of a supernova , 2008, Nature.

[99]  A. Gal-yam Luminous Supernovae , 2012, Science.

[100]  D. Perley,et al.  A surge of light at the birth of a supernova , 2018, Nature.

[101]  C. Tao,et al.  Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory (Corrigendum) , 2013, 1310.4184.

[102]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .

[103]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[104]  Andrew J. Drake,et al.  OPTICAL DISCOVERY OF PROBABLE STELLAR TIDAL DISRUPTION FLARES , 2010, 1009.1627.

[105]  M. Phillips,et al.  The Carnegie Supernova Project I: analysis of stripped-envelope supernova light curves , 2017, 1707.07614.

[106]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[107]  D. Perley,et al.  The Redshift Completeness of Local Galaxy Catalogs , 2017, The Astrophysical Journal.

[108]  E. Ofek,et al.  ASTEROID LIGHT CURVES FROM THE PALOMAR TRANSIENT FACTORY SURVEY: ROTATION PERIODS AND PHASE FUNCTIONS FROM SPARSE PHOTOMETRY , 2015, 1504.04041.

[109]  Robert Jedicke,et al.  Detecting Earth’s temporarily-captured natural satellites—Minimoons , 2014, 1406.3534.

[110]  S. Gezari,et al.  Sifting for Sapphires: Systematic Selection of Tidal Disruption Events in iPTF , 2017, The Astrophysical journal. Supplement series.

[111]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[112]  Antoine Llebaria,et al.  PHOTOMETRIC STUDY OF THE KREUTZ COMETS OBSERVED BY SOHO FROM 1996 TO 2005 , 2010 .

[113]  D. Steeghs,et al.  A deep catalogue of classical Be stars in the direction of the Perseus Arm: spectral types and interstellar reddenings , 2014, 1410.1533.

[114]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[115]  M. Sullivan,et al.  LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.

[116]  S. Djorgovski,et al.  Understanding extreme quasar optical variability with CRTS – I. Major AGN flares , 2017, 1706.03079.

[117]  Supernovae and the nature of the dark energy , 2001, astro-ph/0104009.

[118]  C. Kochanek,et al.  The search for failed supernovae with the Large Binocular Telescope: first candidates , 2014, 1411.1761.

[119]  M. A. C. Perryman,et al.  The Hipparcos and Tycho catalogues : astrometric and photometric star catalogues derived from the ESA Hipparcos Space Astrometry Mission , 1997 .

[120]  Quan-Zhi Ye,et al.  WHERE ARE THE MINI KREUTZ-FAMILY COMETS? , 2014, 1409.8657.

[121]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[122]  E. O. Ofek,et al.  SUPERNOVA PTF 09UJ: A POSSIBLE SHOCK BREAKOUT FROM A DENSE CIRCUMSTELLAR WIND , 2010, 1009.5378.

[123]  S. Smartt,et al.  A First Catalog of Variable Stars Measured by the Asteroid Terrestrial-impact Last Alert System (ATLAS) , 2018, The Astronomical Journal.

[124]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[125]  S. Kulkarni,et al.  ASTEROID SPIN-RATE STUDY USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY , 2015, 1506.08493.

[126]  E. Ofek,et al.  Light Curves of Hydrogen-poor Superluminous Supernovae from the Palomar Transient Factory , 2017, The Astrophysical Journal.

[127]  E. Nakar A UNIFIED PICTURE FOR LOW-LUMINOSITY AND LONG GAMMA-RAY BURSTS BASED ON THE EXTENDED PROGENITOR OF llGRB 060218/SN 2006AJ , 2015, 1503.00441.

[128]  M. Sullivan,et al.  FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE , 2015, 1512.00846.

[129]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[130]  P. Nugent,et al.  HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE , 2016, 1611.09459.

[131]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[132]  K. Nomoto,et al.  TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES , 2015, 1510.00834.

[133]  R. Nichol,et al.  DES14X3taz: A TYPE I SUPERLUMINOUS SUPERNOVA SHOWING A LUMINOUS, RAPIDLY COOLING INITIAL PRE-PEAK BUMP , 2015, 1512.06043.

[134]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[135]  J. Borovička,et al.  A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors , 2013, Nature.

[136]  P. Brown,et al.  THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek , 2013, 1306.2337.

[137]  Dustin Tran,et al.  Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.

[138]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[139]  Eric Agol,et al.  TRANSIT SURVEYS FOR EARTHS IN THE HABITABLE ZONES OF WHITE DWARFS , 2011, 1103.2791.

[140]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[141]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[142]  S. Smartt,et al.  Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves , 2015, 1511.03740.

[143]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[144]  Keivan G. Stassun,et al.  Photometric Variability of the Be Star Population , 2016, 1609.08449.

[145]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[146]  J. Prieto,et al.  A Survey About Nothing: Monitoring a Million Supergiants for Failed Supernovae , 2008, 0802.0456.

[147]  P. Vreeswijk,et al.  iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.

[148]  E. Bellm Volumetric Survey Speed: A Figure of Merit for Transient Surveys , 2016, 1605.02081.

[149]  A Chandra ACIS Observation of the X-Ray-luminous SN 1988Z , 2006, astro-ph/0604106.

[150]  Q. Ye A Search of Reactivated Comets , 2017, 1703.06997.

[151]  V. Ptuskin,et al.  Type IIn supernovae as sources of high energy astrophysical neutrinos , 2015, 1510.08387.

[152]  J. Prieto,et al.  SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.

[153]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[154]  S. Kulkarni,et al.  Small Near-Earth Asteroids in the Palomar Transient Factory Survey: A Real-Time Streak-detection System , 2016, 1609.08018.

[155]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[156]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[157]  Richard Walters,et al.  RAPIDLY DECAYING SUPERNOVA 2010X: A CANDIDATE “.Ia” EXPLOSION , 2010, 1009.0960.

[158]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[159]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[160]  E. Ofek,et al.  Two New Calcium-rich Gap Transients in Group and Cluster Environments , 2016, 1612.00454.

[161]  A. Drake,et al.  DETECTION OF AN OUTBURST ONE YEAR PRIOR TO THE EXPLOSION OF SN 2011ht , 2013, 1309.4695.

[162]  William H. Lee,et al.  RATIR Follow-up of LIGO/Virgo Gravitational Wave Events , 2017, 1706.03898.

[163]  T. Collett,et al.  Precise Time Delays from Strongly Gravitationally Lensed Type Ia Supernovae with Chromatically Microlensed Images , 2017, 1708.00003.

[164]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[165]  R. Nichol,et al.  SN 2006oz: Rise Of A Super-Luminous Supernova Observed By The SDSS-II SN Survey , 2012, 1201.5393.

[166]  S. Gezari,et al.  iPTF Discovery of the Rapid “Turn-on” of a Luminous Quasar , 2016, 1612.04830.

[167]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[168]  Martin Connors,et al.  Earth’s Trojan asteroid , 2011, Nature.

[169]  Yong Duan,et al.  Active Learning for Multivariate Time Series Classification with Positive Unlabeled Data , 2015, 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI).

[170]  E. Ofek,et al.  PTF13efv—AN OUTBURST 500 DAYS PRIOR TO THE SNHUNT 275 EXPLOSION AND ITS RADIATIVE EFFICIENCY , 2016, 1605.02450.

[171]  F. Bianco,et al.  A GRB and Broad-lined Type Ic Supernova from a Single Central Engine , 2017, The Astrophysical Journal.

[172]  J. Granot,et al.  Afterglow imaging and polarization of misaligned structured GRB jets and cocoons: breaking the degeneracy in GRB 170817A , 2018, 1803.05892.

[173]  Akshay Pai,et al.  Deep-learnt classification of light curves , 2017, 2017 IEEE Symposium Series on Computational Intelligence (SSCI).

[174]  Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.

[175]  Xiaozhe Wang,et al.  Characteristic-Based Clustering for Time Series Data , 2006, Data Mining and Knowledge Discovery.

[176]  Nick Kaiser,et al.  Pan-STARRS: a wide-field optical survey telescope array , 2004, SPIE Astronomical Telescopes + Instrumentation.

[177]  Christopher L. Williams,et al.  Radio Emission from SN 1988Z and Very Massive Star Evolution , 2002, astro-ph/0208190.

[178]  David O. Jones,et al.  The Foundation Supernova Survey: Measuring Cosmological Parameters with Supernovae from a Single Telescope , 2018, The Astrophysical Journal.

[179]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[180]  C. Tao,et al.  Strong dependence of Type Ia supernova standardization on the local specific star formation rate , 2018, Astronomy & Astrophysics.

[181]  E. O. Ofek,et al.  A faint type of supernova from a white dwarf with a helium-rich companion , 2009, Nature.

[182]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[183]  Chien-Cheng Lin,et al.  Searching for Be Stars in the Open Clusters with PTF/iPTF. I. Cluster Sample and Be Star Candidates , 2018 .

[184]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[185]  Michael Porter,et al.  The Zwicky Transient Facility Camera , 2016, Astronomical Telescopes + Instrumentation.

[186]  Dawn Song,et al.  Robust Physical-World Attacks on Deep Learning Models , 2017, 1707.08945.

[187]  R. Stathakis,et al.  What was supernova 1988Z , 1991 .

[188]  Q. Ye,et al.  BANGS AND METEORS FROM THE QUIET COMET 15P/FINLAY , 2015, 1510.06645.

[189]  E. Waxman,et al.  Shock breakout theory , 2016, 1607.01293.

[190]  Yan Liu,et al.  Recurrent Neural Networks for Multivariate Time Series with Missing Values , 2016, Scientific Reports.

[191]  Daniel A. Goldstein,et al.  Rates and Properties of Strongly Gravitationally Lensed Supernovae and their Host Galaxies in Time-Domain Imaging Surveys , 2018 .

[192]  D. Frail,et al.  A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT , 2013, 1307.2366.

[193]  J. Fuller,et al.  Pre-supernova outbursts via wave heating in massive stars – II. Hydrogen-poor stars , 2017, 1710.04251.

[194]  K. Murase,et al.  Blazar Flares as an Origin of High-energy Cosmic Neutrinos? , 2018, The Astrophysical Journal.

[195]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[196]  T. Davis,et al.  Are peculiar velocity surveys competitive as a cosmological probe , 2013, 1312.1022.

[197]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[198]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[199]  R. Kotak,et al.  The Type IIb SN 2011dh: Two years of observations and modelling of the lightcurves , 2014, 1408.0731.

[200]  D. Scolnic,et al.  The cosmic transparency measured with Type Ia supernovae : implications for intergalactic dust , 2018, 1803.08592.

[201]  David Polishook,et al.  DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION , 2013, 1304.4236.

[202]  Bruno Leibundgut,et al.  Supernova Cosmology: Legacy and Future , 2011, 1102.1431.

[203]  SN 1988Z: spectro-photometric catalogue and energy estimates⋆ , 1999, astro-ph/9905313.

[204]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[205]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[206]  M. Elvis,et al.  The need for speed in Near-Earth Asteroid characterization , 2014, 1504.00712.

[207]  Enrico Ramirez-Ruiz,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[208]  Quan-Zhi Ye,et al.  GONE IN A BLAZE OF GLORY: THE DEMISE OF COMET C/2015 D1 (SOHO) , 2015, 1509.07606.

[209]  Tom Heskes,et al.  Bigger Buffer k-d Trees on Multi-Many-Core Systems , 2018, VECPAR.

[210]  N. Panagia,et al.  SN 1988Z : the most distant radio supernova , 1993 .

[211]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[212]  P. Mazzali,et al.  Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars , 2016, 1612.02882.

[213]  Wee Keong Ng,et al.  A survey on data stream clustering and classification , 2015, Knowledge and Information Systems.

[214]  A. Fitzsimmons,et al.  A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2 , 2010, Nature.

[215]  Hee-Jae Lee,et al.  Confirmation of Large Super-fast Rotator (144977) 2005 EC127 , 2017, 1704.08451.

[216]  A. Rest,et al.  SHOCK BREAKOUT AND EARLY LIGHT CURVES OF TYPE II-P SUPERNOVAE OBSERVED WITH KEPLER , 2016, 1603.05657.

[217]  A. Drake,et al.  THE 2012 RISE OF THE REMARKABLE TYPE IIn SN 2009ip , 2012, 1210.3347.

[218]  B. Weiner,et al.  SN REFSDAL: CLASSIFICATION AS A LUMINOUS AND BLUE SN 1987A-LIKE TYPE II SUPERNOVA , 2015, 1512.09093.

[219]  E. Quataert,et al.  SETTING THE STAGE FOR CIRCUMSTELLAR INTERACTION IN CORE-COLLAPSE SUPERNOVAE. II. WAVE-DRIVEN MASS LOSS IN SUPERNOVA PROGENITORS , 2013, 1308.5978.

[220]  S. E. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[221]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[222]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[223]  A. Kim,et al.  Measuring the Growth Rate of Structure with Type IA Supernovae from LSST , 2017, 1708.08236.

[224]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[225]  T. Sakamoto,et al.  The outflow structure of GW170817 from late-time broad-band observations , 2018, 1801.06516.

[226]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[227]  D. Jewitt,et al.  THE ACTIVE ASTEROIDS , 2011, 1112.5220.

[228]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[229]  Matthew J. Matuszewski,et al.  iPTF 16hgs: A Double-peaked Ca-rich Gap Transient in a Metal-poor, Star-forming Dwarf Galaxy , 2018, The Astrophysical Journal.

[230]  C. Kochanek FAILED SUPERNOVAE EXPLAIN THE COMPACT REMNANT MASS FUNCTION , 2013, 1308.0013.

[231]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[232]  S. Woosley,et al.  Very Low-energy Supernovae: Light Curves and Spectra of Shock Breakout , 2017, 1706.02440.

[233]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[234]  E. Ofek,et al.  SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE , 2015, 1508.04775.

[235]  Christopher D. Martin,et al.  Supernova PTF 12glz: A Possible Shock Breakout Driven through an Aspherical Wind , 2018, The Astrophysical Journal.

[236]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[237]  David J Armstrong,et al.  NGTS-1b : a hot Jupiter transiting an M-dwarf , 2017, 1710.11099.

[238]  A. Gal-yam,et al.  Exploring the Efficacy and Limitations of Shock-cooling Models: New Analysis of Type II Supernovae Observed by the Kepler Mission , 2016, 1612.02805.

[239]  S. Woosley,et al.  VERY LOW ENERGY SUPERNOVAE FROM NEUTRINO MASS LOSS , 2013, 1303.5055.

[240]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE IIn SUPERNOVAE: TYPICAL PROPERTIES AND IMPLICATIONS FOR THEIR PROGENITOR STARS , 2010, 1010.2689.

[241]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[242]  J. C. D'iaz-V'elez,et al.  All-sky Search for Time-integrated Neutrino Emission from Astrophysical Sources with 7 yr of IceCube Data , 2016, 1609.04981.

[243]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[244]  A. Goobar,et al.  Narrowing down the possible explanations of cosmic acceleration with geometric probes , 2017, 1705.05768.

[245]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[246]  P. Brown,et al.  Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor , 2017, Proceedings of the International Astronomical Union.

[247]  M. C. Begam,et al.  Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.

[248]  A. Goobar,et al.  Shedding light on the Type Ia supernova extinction puzzle: dust location found , 2018, Monthly Notices of the Royal Astronomical Society.

[249]  David Schiminovich,et al.  Probing Shock Breakout with Serendipitous GALEX Detections of Two SNLS Type II-P Supernovae , 2008 .

[250]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[251]  Mansi Kasliwal,et al.  A Turnover in the Radio Light Curve of GW170817 , 2018, 1803.06853.

[252]  N. Chugai,et al.  SN 1988Z: low-mass ejecta colliding with the clumpy wind? , 1994 .

[253]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[254]  P. Vreeswijk,et al.  iPTF15dtg: a double-peaked Type Ic Supernova from a massive progenitor , 2016, 1605.02491.

[255]  P. Brown,et al.  The shock break-out of GRB 060218/SN 2006aj , 2006, astro-ph/0603279.

[256]  E. Quataert,et al.  Wave‐driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core‐collapse supernovae , 2012, 1202.5036.

[257]  Charu C. Aggarwal,et al.  Data Streams - Models and Algorithms , 2014, Advances in Database Systems.

[258]  J. Rhoads How to Tell a Jet from a Balloon: A Proposed Test for Beaming in Gamma-Ray Bursts , 1997, astro-ph/9705163.

[259]  William H. Lee,et al.  Confined dense circumstellar material surrounding a regular type II supernova , 2017, Nature Physics.

[260]  S. Velzen,et al.  AN ENHANCED RATE OF TIDAL DISRUPTIONS IN THE CENTRALLY OVERDENSE E+A GALAXY NGC 3156 , 2016, 1604.02056.

[261]  C. Ott,et al.  LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC) , 2015, 1505.06746.

[262]  M. Sullivan,et al.  The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.

[263]  Brett Naul,et al.  A recurrent neural network for classification of unevenly sampled variable stars , 2017, Nature Astronomy.

[264]  J. Sollerman,et al.  The bolometric light curves and physical parameters of stripped-envelope supernovae , 2016, 1602.01736.

[265]  S. Gezari,et al.  Revisiting Optical Tidal Disruption Events with iPTF16axa , 2017, 1703.01299.

[266]  Matthew J. Graham,et al.  The Zwicky Transient Facility Alert Distribution System , 2018, Publications of the Astronomical Society of the Pacific.