Distribution Functions for Largest Eigenvalues and Their Applications

It is now believed that the limiting distribution function of the largest eigenvalue in the three classic random matrix models GOE, GUE and GSE describe new universal limit laws for a wide variety of processes arising in mathematical physics and interacting particle systems. These distribution

[1]  M. L. Mehta,et al.  ON THE STATISTICAL PROPERTIES OF THE LEVEL-SPACINGS IN NUCLEAR SPECTRA , 1960 .

[2]  M. Gaudin Sur la loi limite de l'espacement des valeurs propres d'une matrice ale´atoire , 1961 .

[3]  C. Porter Statistical Theories of Spectra: Fluctuations , 1965 .

[4]  C. Tracy,et al.  Spin spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region , 1976 .

[5]  M. Jimbo,et al.  Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent , 1980 .

[6]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[7]  Vladimir E. Korepin,et al.  Differential Equations for Quantum Correlation Functions , 1990 .

[8]  Craig A. Tracy,et al.  Mathematical Physics © Springer-Verlag 1994 Fredholm Determinants, Differential Equations and Matrix Models , 2022 .

[9]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[10]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[11]  P. Moerbeke,et al.  Random Matrices, Vertex Operators and the Virasoro-algebra , 1995 .

[12]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[13]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[14]  J. Timonen,et al.  KINETIC ROUGHENING IN SLOW COMBUSTION OF PAPER , 1997 .

[15]  Timo Seppäläinen,et al.  Exact limiting shape for a simplified model of first-passage percolation on the plane , 1998 .

[16]  Andrew Odlyzko,et al.  On Longest Increasing Subsequences in Random Permutations , 1998 .

[17]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[18]  D. Griffeath,et al.  Cellular Automaton Growth on Z2: Theorems, Examples, and Problems , 1998 .

[19]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[20]  J. Propp,et al.  Random Domino Tilings and the Arctic Circle Theorem , 1998, math/9801068.

[21]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[22]  Craig A. Tracy,et al.  Random Unitary Matrices, Permutations and Painlevé , 1999 .

[23]  yuliy baryshnikov GUEs and queues , 1999 .

[24]  Eric M. Rains,et al.  Symmetrized Random Permutations , 1999 .

[25]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[26]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[27]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[28]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[29]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[30]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[31]  J. Baik,et al.  On the distribution of the length of the second row of a Young diagram under Plancherel measure , 1999, math/9901118.

[32]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[33]  A. Okounkov Random matrices and ramdom permutations , 1999, math/9903176.

[34]  Janko Gravner,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000 .

[35]  Janko Gravner,et al.  A growth model in a random environment , 2000 .

[36]  K. Johansson Non-intersecting paths, random tilings and random matrices , 2000, math/0011250.

[37]  Alexandre Stojanovic Universality in Orthogonal and Symplectic Invariant Matrix Models with Quartic Potential , 2000 .

[39]  H. Spohn,et al.  Statistical Self-Similarity of One-Dimensional Growth Processes , 1999, cond-mat/9910273.

[40]  I. Johnstone On the distribution of the largest principal component , 2000 .

[41]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 2000, Physical review letters.

[42]  Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.

[43]  H. Spohn,et al.  Scale Invariance of the PNG Droplet and the Airy Process , 2001, math/0105240.

[44]  Universal gap fluctuations in the superconductor proximity effect. , 2000, Physical review letters.

[45]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[46]  T. Ala‐Nissila,et al.  Kinetic roughening in slow combustion of paper. , 1997, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Fluctuations in the Composite Regime of a Disordered Growth Model , 2001, math/0111036.

[49]  Marc Yor,et al.  A Representation for Non-Colliding Random Walks , 2002 .

[50]  Neil O'Connell,et al.  Random matrices, non-colliding processes and queues , 2002, math/0203176.

[51]  Kurt Johansson Discrete Polynuclear Growth and Determinantal Processes , 2003 .

[52]  Alexandre Stojanovic Errata: “Universality in Orthogonal and Symplectic Invariant Matrix Models with Quartic Potential” , 2004 .

[53]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.