Generalized Algebraic Kernels and Multipole Expansions for Massively Parallel Vortex Particle Methods

Regularized vortex particle methods offer an appealing alternative to common mesh-based numerical methods for simulating vortex-driven fluid flows. While inherently mesh-free and adaptive, a stable implementation using particles for discretizing the vorticity field must provide a scheme for treating the overlap condition, which is required for convergent regularized vortex particle methods. Moreover, the use of particles leads to an N-body problem. By the means of fast, multipole-based summation techniques, the unfavorable yet intrinsic O(N 2 )-complexity of these problems can be reduced to at least O(N logN). However, this approach requires a thorough and challenging analysis of the underlying regularized smoothing kernels. We introduce a novel class of algebraic kernels, analyze its properties and formulate a decomposition theorem, which radically simplifies the theory of multipole expansions for this case. This decomposition is of great help for the convergence analysis of the multipole series and an in-depth error estimation of the remainder. We use these results to implement a massively parallel Barnes-Hut tree code with O(N logN)-complexity, which can perform complex simulations with up to 10 8 particles routinely. A thorough investigation shows excellent scalability up to 8192 cores on the IBM Blue Gene/P system JUGENE at Julich Supercomputing Centre. We demonstrate the code’s capabilities along different numerical examples, including the dynamics of two merging vortex rings. In addition, we extend the tree code to account for the overlap condition using the concept of remeshing, thus providing a promising and mathematically well-grounded alternative to standard mesh-based algorithms.

[1]  Zhong-Hui Duan,et al.  An adaptive treecode for computing nonbonded potential energy in classical molecular systems , 2001, J. Comput. Chem..

[2]  Sophie Papst,et al.  Computational Methods For Fluid Dynamics , 2016 .

[3]  A. E. Dangor,et al.  Return current and proton emission from short pulse laser interactions with wire targets , 2004 .

[4]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[5]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[6]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[7]  Marjorie Perlman,et al.  Accuracy of vortex methods , 1983 .

[8]  Michael S. Warren,et al.  Vortex Methods for Direct Numerical Simulation of Three-Dimensional Bluff Body Flows , 2002 .

[9]  Michael S. Warren,et al.  Application of fast parallel and sequential tree codes to computing three-dimensional flows with the vortex element and boundary element methods , 1996 .

[10]  Ole Hald,et al.  Convergence of vortex methods for Euler’s equations , 1978 .

[11]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[12]  Leon M. Hall,et al.  Special Functions , 1998 .

[13]  Martin Mašek,et al.  Progress in Mesh-Free Plasma Simulation With Parallel Tree Codes , 2010, IEEE Transactions on Plasma Science.

[14]  S. Shankar,et al.  A New Diffusion Procedure for Vortex Methods , 1996 .

[15]  Paul Gibbon,et al.  Many-body tree methods in physics , 1996 .

[16]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[17]  Grégoire Winckelmans,et al.  Combining the vortex-in-cell and parallel fast multipole methods for efficient domain decomposition simulations , 2008, J. Comput. Phys..

[18]  G. Winckelmans,et al.  Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry , 2000 .

[19]  E. Saff,et al.  Distributing many points on a sphere , 1997 .

[20]  Ivo Kabadshow,et al.  Periodic Boundary Conditions and the Error-Controlled Fast Multipole Method , 2018 .

[21]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[22]  Franz Gähler,et al.  Direct Wolf summation of a polarizable force field for silica. , 2010, The Journal of chemical physics.

[23]  Holger Dachsel,et al.  Corrected article: "An error-controlled fast multipole method" [J. Chem. Phys. 131, 244102 (2009)]. , 2010, The Journal of chemical physics.

[24]  L. Hernquist Hierarchical N-body methods , 1987 .

[25]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[26]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[27]  P. Koumoutsakos,et al.  A Lagrangian particle level set method. , 2005 .

[28]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[29]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[30]  C. Pozrikidis,et al.  Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets , 2000, Journal of Fluid Mechanics.

[31]  G. Barton Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves , 1989 .

[32]  J. Monaghan,et al.  Extrapolating B splines for interpolation , 1985 .

[33]  Diego Rossinelli,et al.  Flow simulations using particles: bridging computer graphics and CFD , 2008, SIGGRAPH '08.

[34]  Hans Fangohr,et al.  Efficient Methods for Handling Long-Range Forces in Particle—Particle Simulations , 2000, physics/0004013.

[35]  M. Gellert,et al.  A stable vorticity-velocity formulation for viscous flow analysis , 1990 .

[36]  C. Rehbach,et al.  Numerical calculation of three-dimensional unsteady flows with vortex sheets , 1977 .

[37]  Bernard R. Brooks,et al.  New spherical‐cutoff methods for long‐range forces in macromolecular simulation , 1994, J. Comput. Chem..

[38]  Paul Gibbon,et al.  Efficiency and scalability of the parallel Barnes-Hut tree code PEPC , 2009, PARCO.

[39]  Joachim Wambsganss,et al.  Gravitational lensing: numerical simulations with a hierarchical tree code , 1999 .

[40]  T. Tachim Medjo,et al.  Vorticity-Velocity formulation for the stationary Navier-Stokes equations: The three-dimensional case , 1995 .

[41]  Charles G. Speziale,et al.  On the advantages of the vorticity-velocity formulations of the equations of fluid dynamics , 1986 .

[42]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[43]  D. Birchall,et al.  Computational Fluid Dynamics , 2020, Radial Flow Turbocompressors.

[44]  Lukas Arnold,et al.  Towards a petascale tree code: Scaling and efficiency of the PEPC library , 2011, J. Comput. Sci..

[45]  Christopher R. Anderson,et al.  On Vortex Methods , 1985 .

[46]  J. Williamson Low-storage Runge-Kutta schemes , 1980 .

[47]  Omar M. Knio,et al.  Numerical study of a three-dimensional vortex method , 1990 .

[48]  Gustavo E Scuseria,et al.  Revisiting infinite lattice sums with the periodic fast multipole method. , 2004, The Journal of chemical physics.

[49]  Michael S. Warren,et al.  A parallel hashed oct-tree N-body algorithm , 1993, Supercomputing '93. Proceedings.

[50]  Vivek Sarin,et al.  A Multipole Based Treecode Using Spherical Harmonics for Potentials of the Form r-lambda , 2005, International Conference on Computational Science.

[51]  Chaoyang Wang Exact Solutions of the Steady-State Navier-Stokes Equations , 1991 .

[52]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[53]  H. J.,et al.  Hydrodynamics , 1924, Nature.

[54]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[55]  Paul Gibbon,et al.  PEPC: Pretty Efficient Parallel Coulomb-solver , 2003 .

[56]  Grégoire Winckelmans,et al.  Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows , 1993 .

[57]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 3‐D euler equations , 1990 .

[58]  Vikram Jandhyala,et al.  Single Level Multipole Expansions and Operators for Potentials of the Form r-Lambda , 2005, SIAM J. Sci. Comput..

[59]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[60]  J. Christiansen Numerical Simulation of Hydrodynamics by the Method of Point Vortices , 1997 .

[61]  Diana Baader,et al.  Theoretical Numerical Analysis A Functional Analysis Framework , 2016 .

[62]  Louis Rosenhead,et al.  The Spread of Vorticity in the Wake Behind a Cylinder , 1930 .

[63]  John K. Salmon,et al.  Parallel hierarchical N-body methods , 1992 .

[64]  L. Barba,et al.  Advances in viscous vortex methods—meshless spatial adaption based on radial basis function interpolation , 2005 .

[65]  Chao-Yang Wang,et al.  Exact Solutions of the Unsteady Navier-Stokes Equations , 1989 .

[66]  Georges-Henri Cottet,et al.  Multi-purpose regridding in vortex methods , 1999 .

[67]  Fazle Hussain,et al.  Collision of two vortex rings , 1991, Journal of Fluid Mechanics.

[68]  James M. Kang,et al.  Space-Filling Curves , 2017, Encyclopedia of GIS.

[69]  R. Duraiswami,et al.  Fast Multipole Methods for the Helmholtz Equation in Three Dimensions , 2005 .

[70]  Rolf Dieter Grigorieff On Cardinal Spline Interpolation , 2013, Comput. Methods Appl. Math..

[71]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[72]  L. Ting,et al.  Viscous Vortical Flows , 1991 .

[73]  Gregoire Stephane Winckelmans Topics in vortex methods for the computation of three- and two-dimensional incompressible unsteady flows , 1989 .

[74]  Michael S. Warren,et al.  Skeletons from the treecode closet , 1994 .

[75]  K. Lindsay,et al.  A particle method and adaptive treecode for vortex sheet motion in three-dimensional flow , 2001 .

[76]  Andrew J. Majda,et al.  High order accurate vortex methods with explicit velocity kernels , 1985 .

[77]  H. O. Nordmark HIGHER ORDER VORTEX METHODS WITH REZONING , 1988 .

[78]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[79]  A. Chorin Numerical study of slightly viscous flow , 1973, Journal of Fluid Mechanics.

[80]  A. Leonard Vortex methods for flow simulation , 1980 .

[81]  L. Rosenhead The Formation of Vortices from a Surface of Discontinuity , 1931 .

[82]  Michael Hofmann,et al.  Parallel sorting algorithms for optimizing particle simulations , 2010, 2010 IEEE International Conference On Cluster Computing Workshops and Posters (CLUSTER WORKSHOPS).

[83]  Paul Gibbon,et al.  A 3D hierarchical tree code for dense plasma simulation , 1994 .

[84]  Mathieu Coquerelle,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com Journal of Computational Physics xxx (2008) xxx–xxx , 2022 .

[85]  Petros Koumoutsakos,et al.  Inviscid Axisymmetrization of an Elliptical Vortex , 1997 .

[86]  Steven G. Johnson,et al.  FFTW: an adaptive software architecture for the FFT , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[87]  G. Pedrizzetti,et al.  Vortex Dynamics , 2011 .

[88]  Martin Head-Gordon,et al.  PERIODIC BOUNDARY CONDITIONS AND THE FAST MULTIPOLE METHOD , 1997 .

[89]  A. Leonard Computing Three-Dimensional Incompressible Flows with Vortex Elements , 1985 .

[90]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[91]  Ahmed F. Ghoniem,et al.  Convergence Characteristics and Computational Cost of Two Algebraic Kernels in Vortex Methods with a Tree-Code Algorithm , 2009, SIAM J. Sci. Comput..

[92]  L. L. Van Dommelen,et al.  A new diffusion scheme in vortex methods for three-dimensional incompressible flows , 1996 .

[93]  Koichi Oshima,et al.  Experimental Study of Interacting Vortex Rings , 1987 .

[94]  H. O. Nordmark,et al.  Rezoning for higher order vortex methods , 1991 .

[95]  Lorena A. Barba,et al.  Vortex Method for computing high-Reynolds number flows: Increased accuracy with a fully mesh-less formulation. , 2004 .

[96]  G. Arfken Mathematical Methods for Physicists , 1967 .

[97]  P. Miocchi,et al.  An efficient parallel tree-code for the simulation of self-gravitating systems , 2001 .

[98]  Michael S. Warren,et al.  Fast Parallel Tree Codes for Gravitational and Fluid Dynamical N-Body Problems , 1994, Int. J. High Perform. Comput. Appl..

[99]  R. A. Nicolaides,et al.  Discretization of incompressible vorticity–velocity equations on triangular meshes , 1990 .

[100]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[101]  Matthew G. Knepley,et al.  PetFMM—A dynamically load‐balancing parallel fast multipole library , 2009, ArXiv.

[102]  Jiezhi Wu,et al.  Vorticity and Vortex Dynamics , 2006 .

[103]  B. Lucquin-Desreux,et al.  Accuracy of a deterministic particle method for Navier‐Stokes equations , 1988 .

[104]  Michael S. Warren,et al.  A portable parallel particle program , 1995 .

[105]  Joshua E. Barnes,et al.  Error Analysis of a Tree Code , 1989 .

[106]  J. Thomas Beale,et al.  On the Accuracy of Vortex Methods at Large Times , 1988 .

[107]  Alessandro Curioni,et al.  Billion vortex particle direct numerical simulations of aircraft wakes , 2008 .

[108]  Georges-Henri Cottet,et al.  A new approach for the analysis of Vortex Methods in two and three dimensions , 1988 .

[109]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[110]  Thomas Y. Hou,et al.  Convergence of the point vortex method for the 2-D euler equations , 1990 .

[111]  Grégoire Winckelmans,et al.  Weak solutions of the three-dimensional vorticity equation with vortex singularities , 1988 .

[112]  Ahmed F. Ghoniem,et al.  Modified interpolation kernels for treating diffusion and remeshing in vortex methods , 2006, J. Comput. Phys..

[113]  H. H. Hermann von Helmholtz , 1906, Nature.

[114]  Paul Russell Schatzle,et al.  An Experimental Study of Fusion of Vortex Rings , 1987 .

[115]  Tim Colonius,et al.  A general deterministic treatment of derivatives in particle methods , 2002 .

[116]  Dalia Fishelov,et al.  A new vortex scheme for viscous flow , 1990 .

[117]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .