Estimating error bounds for tensor product binary subdivision volumetric model

In this article, by generalizing the techniques of Mustafa, Falai and Deng (2006), we estimate the error bounds between the tensor product binary volumetric model and its control polyhedron after k-fold subdivision. Our bounds are expressed in terms of the first-order differences of the initial control point sequences and constants that depend on the subdivision masks.

[1]  Kaihuai Qin,et al.  Estimating subdivision depth of Catmull-Clark surfaces , 2004, Journal of Computer Science and Technology.

[2]  G. Mustafa,et al.  Estimating error bounds for binary subdivision curves/surfaces , 2006 .

[3]  GhulamMustafa,et al.  A New Solid Subdivision Scheme , 2005 .

[4]  Hong Qin,et al.  A new solid subdivision scheme based on box splines , 2002, SMA '02.

[5]  Hong Qin,et al.  An interpolatory subdivision for volumetric models over simplicial complexes , 2003, 2003 Shape Modeling International..

[6]  Jörg Peters,et al.  Tight linear envelopes for splines , 2001, Numerische Mathematik.

[7]  Chandrajit L. Bajaj,et al.  A subdivision scheme for hexahedral meshes , 2002, The Visual Computer.

[8]  Nira Dyn,et al.  Analysis of uniform binary subdivision schemes for curve design , 1991 .

[9]  Panagiotis D. Kaklis,et al.  Bounding the Distance between 2D Parametric Bézier Curves and their Control Polygon , 2003, Computing.

[10]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[11]  Xiao-Ming Zeng,et al.  Computational formula of depth for Catmull-Clark subdivision surfaces , 2006 .

[12]  Jörg Peters,et al.  Sharp, quantitative bounds on the distance between a polynomial piece and its Bézier control polygon , 1999, Comput. Aided Geom. Des..

[13]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[14]  Ulrich Reif Best bounds on the approximation of polynomials and splines by their control structure , 2000, Comput. Aided Geom. Des..

[15]  Nira Dyn,et al.  Using parameters to increase smoothness of curves and surfaces generated by subdivision , 1990, Comput. Aided Geom. Des..

[16]  Fuhua Cheng Estimating subdivision depths for rational curves and surfaces , 1992, TOGS.

[17]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .