Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures

We review the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices. Localized plasmon resonances occurring in metallic nanoparticles are discussed both for single particles and particle ensembles, focusing on the generation of confined light fields enabling enhancement of Raman-scattering and nonlinear processes. We then survey the basic properties of interface plasmons propagating along flat boundaries of thin metallic films, with applications for waveguiding along patterned films, stripes, and nanowires. Interactions between plasmonic structures and optically active media are also discussed.

[1]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[2]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[3]  Henri Lezec,et al.  Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. , 2004, Optics express.

[4]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[5]  S. Maier,et al.  Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing , 2004, physics/0405105.

[6]  S. Bozhevolnyi,et al.  Microscopy of localized second-harmonic enhancement in random metal nanostructures , 2004 .

[7]  W. A. Murray,et al.  Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array , 2004 .

[8]  Tatiana V. Teperik,et al.  Radiative decay of plasmons in a metallic nanoshell , 2004 .

[9]  B. Djafari-Rouhani,et al.  Simple nanometric plasmon multiplexer. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  N. García,et al.  Measuring the speed of a surface plasmon , 2004 .

[11]  A. Hernando,et al.  Spin-wave excitations in ribbon-shaped Fe nanoparticles , 2004 .

[12]  S. Maier,et al.  Low-loss fiber accessible plasmon waveguide for planar energy guiding and sensing , 2003, physics/0312058.

[13]  Luis Martín-Moreno,et al.  Focusing light with a single subwavelength aperture flanked by surface corrugations , 2003 .

[14]  Kenjiro Miyano,et al.  Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation , 2003 .

[15]  S. Maier,et al.  Mega-electron-volt ion beam induced anisotropic plasmon resonance of silver nanocrystals in glass , 2003 .

[16]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[17]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[18]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[19]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[20]  Lewis J. Rothberg,et al.  The structural basis for giant enhancement enabling single-molecule Raman scattering , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[22]  H. Lezec,et al.  Multiple paths to enhance optical transmission through a single subwavelength slit. , 2003, Physical review letters.

[23]  Jonas Beermann,et al.  Direct observation of localized second-harmonic enhancement in random metal nanostructures. , 2003, Physical review letters.

[24]  Harry A. Atwater,et al.  Optical pulse propagation in metal nanoparticle chain waveguides , 2003 .

[25]  G Seifert,et al.  Second-harmonic generation from ellipsoidal silver nanoparticles embedded in silica glass. , 2003, Optics letters.

[26]  Franz R. Aussenegg,et al.  Optimized surface-enhanced Raman scattering on gold nanoparticle arrays , 2003 .

[27]  H. Lezec,et al.  Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. , 2003, Physical review letters.

[28]  A. Requicha,et al.  Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.

[29]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[30]  Sergey I. Bozhevolnyi,et al.  Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths , 2003 .

[31]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[32]  Bernhard Lamprecht,et al.  Non?diffraction-limited light transport by gold nanowires , 2002 .

[33]  J. Trent,et al.  Ordered nanoparticle arrays formed on engineered chaperonin protein templates , 2002, Nature materials.

[34]  D. Reinhoudt,et al.  Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. , 2002, Physical review letters.

[35]  Magnus Willander,et al.  Theory of surface-plasmon resonance optical-field enhancement at prolate spheroids , 2002 .

[36]  M. Bawendi,et al.  Surface-enhanced emission from single semiconductor nanocrystals. , 2002, Physical review letters.

[37]  Harald Ditlbacher,et al.  Two-dimensional optics with surface plasmon polaritons , 2002 .

[38]  Harry A. Atwater,et al.  Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss , 2002 .

[39]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[40]  Harry A. Atwater,et al.  Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy , 2002 .

[41]  David R. Smith,et al.  Shape effects in plasmon resonance of individual colloidal silver nanoparticles , 2002 .

[42]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[43]  Paul Mulvaney,et al.  Not All That’s Gold Does Glitter , 2001 .

[44]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[45]  Piers Andrew,et al.  Molecular fluorescence above metallic gratings , 2001 .

[46]  Ildar Salakhutdinov,et al.  Identity of long-range surface plasmons along asymmetric structures and their potential for refractometric sensors , 2001 .

[47]  Bernhard Lamprecht,et al.  Surface plasmon propagation in microscale metal stripes , 2001 .

[48]  J. Hvam,et al.  Waveguiding in surface plasmon polariton band gap structures. , 2001 .

[49]  R. Dasari,et al.  Surface-enhanced Raman scattering and biophysics , 2001 .

[50]  Bernhard Lamprecht,et al.  Design of multipolar plasmon excitations in silver nanoparticles , 2000 .

[51]  A. Scherer,et al.  Surface plasmon enhanced light-emitting diode , 2000, IEEE Journal of Quantum Electronics.

[52]  Xu,et al.  Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[54]  M. El-Sayed,et al.  Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals , 2000 .

[55]  P. Berini,et al.  Experimental observation of plasmon polariton waves supported by a thin metal film of finite width. , 2000, Optics letters.

[56]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[57]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[58]  Federico Capasso,et al.  Single-mode surface-plasmon laser , 2000 .

[59]  Vahid Sandoghdar,et al.  Second-harmonic generation from individual surface defects under local excitation , 2000 .

[60]  Bernhard Lamprecht,et al.  RESONANT AND OFF-RESONANT LIGHT-DRIVEN PLASMONS IN METAL NANOPARTICLES STUDIED BY FEMTOSECOND-RESOLUTION THIRD-HARMONIC GENERATION , 1999 .

[61]  William L. Barnes,et al.  Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices , 1999 .

[62]  Mostafa A. El-Sayed,et al.  Electron dynamics in gold and gold–silver alloy nanoparticles: The influence of a nonequilibrium electron distribution and the size dependence of the electron–phonon relaxation , 1999 .

[63]  Eric Bourillot,et al.  Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles , 1999 .

[64]  W. Barnes,et al.  Photonic band gaps in metallic microcavities , 1998 .

[65]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[66]  Carlo Sirtori,et al.  Long-wavelength (? ? 8–11.5??µm) semiconductor lasers with waveguides based on surface plasmons , 1998 .

[67]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[68]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[69]  Anatoly V. Zayats,et al.  NEAR-FIELD SECOND HARMONIC GENERATION FROM A ROUGH METAL SURFACE , 1997 .

[70]  M. El-Sayed,et al.  Electron Dynamics of Passivated Gold Nanocrystals Probed by Subpicosecond Transient Absorption Spectroscopy , 1997 .

[71]  H. Schmidt,et al.  Optically Induced Damping Of The Surface Plasmon Resonance In Gold Colloids , 1997, QELS 1997.

[72]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[73]  William L. Barnes,et al.  Modification of the spontaneous emission rate of Eu 3+ ions close to a thin metal mirror , 1997 .

[74]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[75]  M. El-Sayed,et al.  Picosecond Dynamics of Colloidal Gold Nanoparticles , 1996 .

[76]  A. Campillo,et al.  Optical processes in microcavities , 1996 .

[77]  John B. Schneider,et al.  A selective survey of the finite-difference time-domain literature , 1995 .

[78]  G. Schatz,et al.  Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes , 1995 .

[79]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[80]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[81]  Vinet,et al.  Guided optical waves in planar heterostructures with negative dielectric constant. , 1991, Physical review. B, Condensed matter.

[82]  M. Zervas Surface plasmon-polariton waves guided by thin metal films. , 1991, Optics letters.

[83]  S. C. Hill,et al.  Light Scattering by Particles: Computational Methods , 1990 .

[84]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[85]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[86]  Theo Rasing,et al.  Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation , 1984 .

[87]  H. Craighead,et al.  CHARACTERIZATION AND OPTICAL PROPERTIES OF ARRAYS OF SMALL GOLD PARTICLES. , 1984 .

[88]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[89]  M. Meier,et al.  Enhanced fields on large metal particles: dynamic depolarization. , 1983, Optics letters.

[90]  J. C. Quail,et al.  Long-range surface-plasmon modes in silver and aluminum films. , 1983, Optics letters.

[91]  D. Sarid,et al.  Experimental observation of the long-range surface-plasmon polariton. , 1983, Optics letters.

[92]  Yaochun Shen,et al.  SURFACE-ENHANCED SECOND-HARMONIC GENERATION AND RAMAN SCATTERING , 1983 .

[93]  D. Sarid,et al.  Optical field enhancement by long-range surface-plasma waves. , 1982, Applied optics.

[94]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[95]  D. Sarid Long-Range Surface-Plasma Waves on Very Thin Metal Films , 1981 .

[96]  A. Nitzan,et al.  Spectroscopic properties of molecules interacting with small dielectric particles , 1981 .

[97]  Alastair M. Glass,et al.  Surface second-harmonic generation from metal island films and microlithographic structures , 1981 .

[98]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[99]  Joel I. Gersten,et al.  The effect of surface roughness on surface enhanced Raman scattering , 1980 .

[100]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[101]  E. Economou Surface Plasmons in Thin Films , 1969 .

[102]  C. Powell,et al.  Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium , 1960 .

[103]  R. H. Ritchie Plasma Losses by Fast Electrons in Thin Films , 1957 .

[104]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[105]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[106]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[107]  V. Shalaev Nonlinear optics of random media , 1999 .

[108]  J. Raimond,et al.  Cavity quantum electrodynamics , 1994 .

[109]  P. F. Liao,et al.  Lightning rod effect in surface enhanced Raman scattering , 1982 .

[110]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .