Design of novel aerial jet target

Purpose This paper aims to present and discuss the requirements for flying targets which sometimes are contradictory to each other and to perform a trade-off analysis before the design activity is started. It also aims to demonstrate conceptual and preliminary design processes using a practical example of PW-61 configuration and to show how results of experimental flight tests using a scaled flying target will be described and analyzed before manufacturing the full scale flying target. Design/methodology/approach An important part of the paper consists of the selection of tailplane configuration of the flying target UAV to protect some expensive on-board systems against serious damages and to obtain a sufficient dynamic stability, independently of the amount of the petrol in fuel tank. Inverted V-tail, U-tail and H-tail configurations were considered and compared both, theoretically and in-flight experiments. Findings Flight dynamics models and associated computational procedures were useful both in a preliminary design phase and during the final assessment of the configuration after flight tests. Selection of the tailplane configuration for the flying target UAV is very important to protect some expensive on-board systems against serious damages and to obtain a sufficient dynamic stability, independent of the amount of the petrol in fuel tank. Practical implications Flying targets should be speedy, maneuverable, cheap, easy in deployment and multi-recoverable (if not destroyed by live ammunition), must have relatively low take-off weight and an endurance of at least 1 h. This paper can be useful for proper selection of requirements and preliminary design parameters to make the design process more economically effective. Originality/value This paper presents very efficient methods of assessing the design parameters of flying targets, especially in an early stage of the design process. Stability computations are performed based on equations of motion and are supplemented by flight tests using the scaled flying models. It can be considered as an original, not typical, but very practical approach because it delivers lots of data in the early design stages at relatively low cost.