A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate

A flexible strategy for piezoelectrics Piezoelectric materials produce charge when they are deformed, making them ideal for various types of sensors. However, virtually all piezoelectric materials are ceramics, which are far from ideal for applications requiring flexible sensors. Liao et al. now describe a molecular material with piezoelectric properties comparable to the industry-standard ceramic lead zirconate titanate. The exceptional properties come from finding a molecular solid-solution series that allows for compositional optimization of the piezoelectric properties. Science, this issue p. 1206 A molecular ferroelectric perovskite solid solution has piezoelectric properties similar to those of ceramics. Piezoelectric materials produce electricity when strained, making them ideal for different types of sensing applications. The most effective piezoelectric materials are ceramic solid solutions in which the piezoelectric effect is optimized at what are termed morphotropic phase boundaries (MPBs). Ceramics are not ideal for a variety of applications owing to some of their mechanical properties. We synthesized piezoelectric materials from a molecular perovskite (TMFM)x(TMCM)1–xCdCl3 solid solution (TMFM, trimethylfluoromethyl ammonium; TMCM, trimethylchloromethyl ammonium, 0 ≤ x ≤ 1), in which the MPB exists between monoclinic and hexagonal phases. We found a composition for which the piezoelectric coefficient d33 is ~1540 picocoulombs per newton, comparable to high-performance piezoelectric ceramics. The material has potential applications for wearable piezoelectric devices.

[1]  Haiqing Xu,et al.  Third ferroelectric phase in PMNT single crystals near the morphotropic phase boundary composition , 2001 .

[2]  R. Xiong,et al.  The First Organic–Inorganic Hybrid Luminescent Multiferroic: (Pyrrolidinium)MnBr3 , 2015, Advanced materials.

[3]  M. Wołcyrz,et al.  Structural origin of the x-ray diffuse scattering in (CH 3 ) 4 NCdCl 3 and related compounds , 2008 .

[4]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[5]  Yu-Meng You,et al.  Molecular Ferroelectric with Most Equivalent Polarization Directions Induced by the Plastic Phase Transition. , 2016, Journal of the American Chemical Society.

[6]  Peng-Fei Li,et al.  Metal-free three-dimensional perovskite ferroelectrics , 2018, Science.

[7]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[8]  R. Friend,et al.  Chemically diverse and multifunctional hybrid organic–inorganic perovskites , 2017 .

[9]  Relaxor Ferroelectrics,et al.  Relaxor Ferroelectrics , 2018 .

[10]  Don Berlincourt,et al.  3 – Piezoelectric and Piezomagnetic Materials and Their Function in Transducers , 1964 .

[11]  S. Alkoy,et al.  Piezoelectric Sensors and Sensor Materials , 1998 .

[12]  M. Body,et al.  Correlation between 19F environment and isotropic chemical shift in barium and calcium fluoroaluminates. , 2004, Inorganic chemistry.

[13]  R. Xiong,et al.  An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl₃). , 2014, Angewandte Chemie.

[14]  H. Muller The Effect of the Change of Colour in the Flowers of “Pulmonaria offcinalis” upon its Fertilisers , 1883 .

[15]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[16]  J. Stebbins,et al.  Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses , 2002 .

[17]  T. Shrout,et al.  Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[19]  J. J. Lander The crystal structures of NiO.3BaO, NiO.BaO, BaNiO3 and intermediate phases with composition near Ba2Ni2O5; with a note on NiO , 1951 .

[20]  Jiangyu Li,et al.  A molecular ferroelectric thin film of imidazolium perchlorate that shows superior electromechanical coupling. , 2014, Angewandte Chemie.

[21]  Chun He,et al.  Molecular Dynamics of Flexible Polar Cations in a Variable Confined Space: Toward Exceptional Two‐Step Nonlinear Optical Switches , 2016, Advanced materials.

[22]  M. Onoe,et al.  Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) , 1967 .

[23]  M. Couzi,et al.  X-ray Diffraction Study of the Ferroelectric Phase Transition of (CH3)4NCdBr3 (TMCB) , 1993 .

[24]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[25]  Zuo-Guang Ye,et al.  Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials : Synthesis, Properties and Applications , 2008 .

[26]  R. Xiong,et al.  Highly Efficient Red-Light Emission in An Organic-Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl₃. , 2015, Journal of the American Chemical Society.

[27]  L. Paton,et al.  Structural diversity in non-layered hybrid perovskites of the RMCl3 family. , 2010, Angewandte Chemie.

[28]  Qifa Zhou,et al.  Enhanced piezoelectric performance of composite sol-gel thick films evaluated using piezoresponse force microscopy. , 2013, Journal of applied physics.

[29]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[30]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[31]  Eric Cross,et al.  Materials science: Lead-free at last , 2004, nature.

[32]  N. Nakatani Observation of Ferroelectric Domain Structure in TGS , 2011 .

[33]  R. Xiong,et al.  A Room-Temperature Hybrid Lead Iodide Perovskite Ferroelectric. , 2018, Journal of the American Chemical Society.

[34]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[35]  Jinlan Wang,et al.  High-Temperature Ferroelectricity and Photoluminescence in a Hybrid Organic-Inorganic Compound: (3-Pyrrolinium)MnCl3. , 2015, Journal of the American Chemical Society.

[36]  Songping D. Huang,et al.  Supramolecular bola-like ferroelectric: 4-methoxyanilinium tetrafluoroborate-18-crown-6. , 2011, Journal of the American Chemical Society.

[37]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[38]  D. Tenne,et al.  Emergence of room-temperature ferroelectricity at reduced dimensions , 2015, Science.

[39]  Y. Ishibashi,et al.  Temperature Dependence of Piezoelectric Properties of a High Curie Temperature Pb(In1/2Nb1/2)O3-PbTiO3 Binary System Single Crystal near a Morphotropic Phase Boundary , 2000 .

[40]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[41]  B. Gallois,et al.  Lattice dynamics and structural phase transitions in the chain compounds TMMC and TMCC: I. Structural study , 1990 .

[42]  Yoshinori Tokura,et al.  Organic ferroelectrics. , 2008, Nature materials.

[43]  J. Petzelt,et al.  The giant electromechanical response in ferroelectric relaxors as a critical phenomenon , 2006, Nature.

[44]  Yu-Meng You,et al.  Competitive Halogen Bond in the Molecular Ferroelectric with Large Piezoelectric Response. , 2018, Journal of the American Chemical Society.

[45]  Jack M. Miller Fluorine-19 magic-angle spinning NMR , 1996 .

[46]  Zhao Pan,et al.  Critical Role of Monoclinic Polarization Rotation in High-Performance Perovskite Piezoelectric Materials. , 2017, Physical review letters.

[47]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[48]  K. Aizu Possible Species of “Ferroelastic” Crystals and of Simultaneously Ferroelectric and Ferroelastic Crystals , 1969 .

[49]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[50]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[51]  Wei-Jian Xu,et al.  A Molecular Perovskite with Switchable Coordination Bonds for High-Temperature Multiaxial Ferroelectrics. , 2017, Journal of the American Chemical Society.

[52]  Peng-Fei Li,et al.  Multiaxial Molecular Ferroelectric Thin Films Bring Light to Practical Applications. , 2018, Journal of the American Chemical Society.

[53]  Xusheng Fang,et al.  Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3–(Bi0.5Na0.5)TiO3 ceramics , 2007 .

[54]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[55]  K. Awaga,et al.  Above-room-temperature magnetodielectric coupling in a possible molecule-based multiferroic: triethylmethylammonium tetrabromoferrate(III). , 2012, Journal of the American Chemical Society.

[56]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[57]  Yu-Meng You,et al.  Bandgap Engineering of Lead‐Halide Perovskite‐Type Ferroelectrics , 2016, Advanced materials.

[58]  M. Hong,et al.  Exploring a Lead-free Semiconducting Hybrid Ferroelectric with a Zero-Dimensional Perovskite-like Structure. , 2016, Angewandte Chemie.

[59]  Peng-Fei Li,et al.  Large Piezoelectric Effect in a Lead-Free Molecular Ferroelectric Thin Film. , 2017, Journal of the American Chemical Society.

[60]  G. Shirane,et al.  Phase Transitions in Solid Solutions of PbZrO 3 and PbTiO 3 (II) X-ray Study , 1952 .

[61]  T. Ogawa,et al.  Giant Electromechanical Coupling Factor of k31 Mode and Piezoelectric d31 Constant in Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 Piezoelectric Single Crystal , 2002 .

[62]  Matthew Rosseinsky,et al.  Electroceramics , 2009 .

[63]  R. Xiong,et al.  Precise Molecular Design of High-Tc 3D Organic-Inorganic Perovskite Ferroelectric: [MeHdabco]RbI3 (MeHdabco = N-Methyl-1,4-diazoniabicyclo[2.2.2]octane). , 2017, Journal of the American Chemical Society.

[64]  Yi Zhang,et al.  A lead-halide perovskite molecular ferroelectric semiconductor , 2015, Nature Communications.

[65]  N. Alcock,et al.  Tetramethylammonium manganese(II) tribromide (TMMB) at 235 and 115 K , 1978 .

[66]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.