Geometric optimization for computer vision

Drawing ideas from differential geometry and optimization, this thesis presents novel parameterization-based framework to address optimization problems formulated on a differentiable manifold. The framework views the manifold as a collection of local coordinate charts. It involves successive parameterizations of a manifold, carrying out optimization of the local cost function in parameter space and then projecting the optimal vector back to the manifold. Several algorithms based on this approach are devised and applied to four computer vision tasks involving recovering pose information from images. First, we cast 2D-3D pose estimation as an optimization problem on the intersection of the special orthogonal group and a cone. We move on to estimate the essential matrix by minimizing a smooth function over the essential manifold. This is followed by formulating the problem of locating quadratic surfaces as an optimization problem cast on the special Euclidean group. Last, we demonstrate how one could simultaneously register multiple partial views of a 3D object within a common coordinate frame by solving an optimization problem involving the N -fold product of the special orthogonal group with itself. A mathematical proof establishes the local quadratic convergent rate of the Newton-like algorithms. Simulation results demonstrate the robustness of techniques against measurement noise and / or occlusion. New closed form calculations for the problems serve as a good initial estimate for any iterative algorithm presented, and give exact solution in the noise free case. The algorithmic technique and mathematical insights developed appear applicable to many problems in computer vision, as well as in other areas.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[3]  David G. Lowe,et al.  Fitting Parameterized Three-Dimensional Models to Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  P. Priouret,et al.  Newton's method on Riemannian manifolds: covariant alpha theory , 2002, math/0209096.

[5]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[6]  C. J. Taylor,et al.  Minimization on the Lie Group SO(3) and Related Manifolds , 1994 .

[7]  Kenichi Kanatani,et al.  Analysis of 3-D Rotation Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[9]  J.B. Moore,et al.  Geometric optimization for 3D pose estimation of quadratic surfaces , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[10]  E. Polak Introduction to linear and nonlinear programming , 1973 .

[11]  Kim L. Boyer,et al.  Enhanced, robust genetic algorithms for multiview range image registration , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[12]  Jh Manton On the various generalisations of optimisation algorithms to manifold , 2004 .

[13]  Thomas S. Huang,et al.  Motion and structure from feature correspondences: a review , 1994, Proc. IEEE.

[14]  John B. Moore,et al.  Global registration of multiple 3D point sets via optimization-on-a-manifold , 2005, SGP '05.

[15]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[16]  Robert E. Mahony,et al.  The Geometry of the Newton Method on Non-Compact Lie Groups , 2002, J. Glob. Optim..

[17]  Yi-Ping Hung,et al.  RANSAC-Based DARCES: A New Approach to Fast Automatic Registration of Partially Overlapping Range Images , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Andrew J. Stoddart,et al.  N-View Point Set Registration: A Comparison , 1999, BMVC.

[19]  Marc Pollefeys,et al.  Multiple view geometry , 2005 .

[20]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[21]  P. Absil,et al.  Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation , 2004 .

[22]  B. Moore,et al.  Gradient I ? low Techniques for Pose Estimation of Quadratic Surfaces , 1996 .

[23]  Sang Wook Lee,et al.  Multiview registration of 3D scenes by minimizing error between coordinate frames , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[25]  Yi Ping Hung,et al.  A fast automatic method for registration of partially-overlapping range images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[26]  D. Luenberger The Gradient Projection Method Along Geodesics , 1972 .

[27]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[29]  Long Quan,et al.  Linear N-Point Camera Pose Determination , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  R. Mahony,et al.  Optimization Algorithms on Homogeneous Spaces , 2005 .

[31]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[32]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[33]  John B. Moore,et al.  Essential Matrix Estimation via Newton-type Methods , 2004 .

[34]  Berthold K. P. Horn Relative orientation , 1987, International Journal of Computer Vision.

[35]  Naokazu Yokoya,et al.  A Robust Method for Registration and Segmentation of Multiple Range Images , 1995, Comput. Vis. Image Underst..

[36]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[37]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[38]  S. Lang Fundamentals of differential geometry , 1998 .

[39]  Naokazu Yokoya,et al.  Range Image Segmentation Based on Differential Geometry: A Hybrid Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  John B. Moore,et al.  Dikin-Type Algorithms for Dextrous Grasping Force Optimization , 1998, Int. J. Robotics Res..

[41]  Wesley E. Snyder,et al.  Pose determination using tree annealing , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[42]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[43]  Chitra Dorai,et al.  Optimal Registration of Object Views Using Range Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Xavier Pennec,et al.  Multiple Registration and Mean Rigid Shape - Application to the 3D case , 1996 .

[45]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[46]  Adrian Hilton,et al.  Registration of multiple point sets , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[47]  John A. Williams,et al.  Simultaneous Registration of Multiple Corresponding Point Sets , 2001, Comput. Vis. Image Underst..

[48]  Venu Madhav Govindu Lie-algebraic averaging for globally consistent motion estimation , 2004, CVPR 2004.

[49]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[50]  Andrew E. Johnson,et al.  Surface registration by matching oriented points , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[51]  R. Mahony The constrained newton method on a Lie group and the symmetric eigenvalue problem , 1996 .

[52]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[53]  John B. Moore,et al.  3D Localization of Quadratic Surfaces via Optimization on a Manifold , 2005 .

[54]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  H. C. Longuet-Higgins,et al.  A computer algorithm for reconstructing a scene from two projections , 1981, Nature.

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  Francis Schmitt,et al.  A Solution for the Registration of Multiple 3D Point Sets Using Unit Quaternions , 1998, ECCV.

[58]  C. DeWitt-Morette,et al.  Analysis, manifolds, and physics , 1977 .

[59]  Wesley E. Snyder,et al.  Linear estimation of object pose from local fits to segments , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[60]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[61]  K. Huper,et al.  Newton-like methods for numerical optimization on manifolds , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[62]  Gérard G. Medioni,et al.  Object modelling by registration of multiple range images , 1992, Image Vis. Comput..

[63]  P. Absil,et al.  Trust-region methods on Riemannian manifolds with applications in numerical linear algebra , 2004 .

[64]  Shi-Min Hu,et al.  Geometry and Convergence Analysis of Algorithms for Registration of 3D Shapes , 2006, International Journal of Computer Vision.

[65]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[66]  Moonhong Baeg,et al.  Pose estimation of quadratic surface using surface fitting technique , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[67]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Olivier D. Faugeras,et al.  Some Properties of the E Matrix in Two-View Motion Estimation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Wolfgang Spohn,et al.  The Representation of , 1986 .

[70]  B. Owren,et al.  The Newton Iteration on Lie Groups , 2000 .

[71]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[72]  Andrew W. Fitzgibbon,et al.  Simultaneous Registration of Multiple Range Views for Use in Reverse Engineering of CAD Models , 1998, Comput. Vis. Image Underst..

[73]  John B. Moore,et al.  Quadratically convergent algorithms for optimal dextrous hand grasping , 2002, IEEE Trans. Robotics Autom..

[74]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[75]  William C. Davidon,et al.  Variable Metric Method for Minimization , 1959, SIAM J. Optim..

[76]  Jonathan H. Manton,et al.  Optimization algorithms exploiting unitary constraints , 2002, IEEE Trans. Signal Process..

[77]  John B. Moore,et al.  Pose Estimation via Gauss-Newton-on-manifold , 2004 .

[78]  Kostas Daniilidis,et al.  Linear Pose Estimation from Points or Lines , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[79]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[80]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[81]  Gregory D. Hager,et al.  Fast and Globally Convergent Pose Estimation from Video Images , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Yaguang Yang Optimization on Riemannian manifold , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[83]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[84]  S. Shankar Sastry,et al.  Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.