All-Optical Magnetothermoelastic Skyrmion Motion

[1]  U. Nowak,et al.  Topology dependence of skyrmion Seebeck and skyrmion Nernst effect , 2022, Scientific Reports.

[2]  S. Eisebitt,et al.  Deterministic Generation and Guided Motion of Magnetic Skyrmions by Focused He+-Ion Irradiation , 2022, Nano letters.

[3]  Yan Zhou,et al.  Dynamics of magnetic skyrmions under temperature gradients , 2022, Applied Physics Letters.

[4]  C. Marrows,et al.  Collective skyrmion motion under the influence of an additional interfacial spin-transfer torque , 2021, Scientific Reports.

[5]  S. Eisebitt,et al.  Application concepts for ultrafast laser-induced skyrmion creation and annihilation , 2021, Applied Physics Letters.

[6]  C. Deranlot,et al.  Thermal Stability of Ultrathin Co/Pt Multilayers , 2021 .

[7]  Yayi Wei,et al.  Model-based image quality optimization for submicron direct laser writing , 2020 .

[8]  S. Eisebitt,et al.  Observation of fluctuation-mediated picosecond nucleation of a topological phase , 2020, Nature Materials.

[9]  N. Arnold,et al.  The optical tweezer of skyrmions , 2020, npj Computational Materials.

[10]  S. Lepadatu Boris computational spintronics—High performance multi-mesh magnetic and spin transport modeling software , 2020, Journal of Applied Physics.

[11]  W. Chao,et al.  Thermal generation, manipulation and thermoelectric detection of skyrmions , 2020, Nature Electronics.

[12]  Yan Zhou,et al.  A spiking neuron constructed by the skyrmion-based spin torque nano-oscillator , 2020, Applied Physics Letters.

[13]  S. Sugimoto,et al.  Creation of magnetic skyrmions by surface acoustic waves , 2020, Nature Nanotechnology.

[14]  G. Schütz,et al.  The role of temperature and drive current in skyrmion dynamics , 2020 .

[15]  H. Ohno,et al.  Formation and current-induced motion of synthetic antiferromagnetic skyrmion bubbles , 2019, Nature Communications.

[16]  Simone Finizio,et al.  Magnetic skyrmion artificial synapse for neuromorphic computing , 2019, ArXiv.

[17]  S. Lepadatu Effect of inter-layer spin diffusion on skyrmion motion in magnetic multilayers , 2019, Scientific Reports.

[18]  G. Durin,et al.  Individual skyrmion manipulation by local magnetic field gradients , 2019, Communications Physics.

[19]  Yan Zhou,et al.  Spin torque nano-oscillators based on antiferromagnetic skyrmions , 2018, Applied Physics Letters.

[20]  P. Jaiswal,et al.  Investigation of structural, electrical properties and dielectric relaxation of CNT doped Cu–Se–Ge–In chalcogenide glassy alloy , 2018, Materials Research Express.

[21]  S. Mangin,et al.  Creation of Magnetic Skyrmion Bubble Lattices by Ultrafast Laser in Ultrathin Films. , 2018, Nano letters.

[22]  J. Berakdar,et al.  Strain and Thermally Induced Magnetic Dynamics and Spin Current in Magnetic Insulators Subject to Transient Optical Grating , 2017, Front. Mater..

[23]  S. Lepadatu Interaction of magnetization and heat dynamics for pulsed domain wall movement with Joule heating , 2016, 1606.07890.

[24]  Kang L. Wang,et al.  Direct observation of the skyrmion Hall effect , 2016, Nature Physics.

[25]  Kang L. Wang,et al.  Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. , 2016, Nano letters.

[26]  Y. Tokura,et al.  Uniaxial stress control of skyrmion phase , 2015, Nature Communications.

[27]  S. Lepadatu Effective field model of roughness in magnetic nano-structures , 2015, 1508.04391.

[28]  Yu-heng Zhang,et al.  Edge-mediated skyrmion chain and its collective dynamics in a confined geometry , 2015, Nature Communications.

[29]  A. Fert,et al.  Skyrmions at room temperature : From magnetic thin films to magnetic multilayers , 2015, 1502.07853.

[30]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[31]  So-Young Baek,et al.  Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system , 2014 .

[32]  Hans Fangohr,et al.  Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory , 2014, Scientific Reports.

[33]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[34]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[35]  K. Fronc,et al.  Magnetic anisotropy and magnetoelastic constants of ultrathin Fe/GaAs(0 0 1) films sputtered in hydrogen atmosphere , 2004 .

[36]  A. Enders,et al.  Strain dependence of the magnetic properties of nm Fe films on W(100) , 1999 .

[37]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[38]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[39]  H. Callen,et al.  The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)2 power law , 1966 .

[40]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .