A cold-atom Fermi–Hubbard antiferromagnet

[1]  G. Bahl,et al.  Measurement of fractional corner charges in rotationally symmetric crystalline topological insulator metamaterials , 2019 .

[2]  T. Lompe,et al.  Note: Suppression of kHz-frequency switching noise in digital micro-mirror devices. , 2016, The Review of scientific instruments.

[3]  F. Brennecke,et al.  Antiferromagnetic Correlations in Two-Dimensional Fermionic Mott-Insulating and Metallic Phases. , 2016, Physical review letters.

[4]  Peter T. Brown,et al.  Observation of canted antiferromagnetism with ultracold fermions in an optical lattice , 2016, 1612.07746.

[5]  I. Bloch,et al.  Spin- and density-resolved microscopy of antiferromagnetic correlations in Fermi-Hubbard chains , 2016, Science.

[6]  Marcos Rigol,et al.  Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model , 2016, Science.

[7]  Zhaojun Bai,et al.  A Fast Selected Inversion Algorithm for Green's Function Calculation in Many-Body Quantum Monte Carlo Simulations , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[8]  M. Greiner,et al.  Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model , 2016, Science.

[9]  Matthew Rispoli,et al.  Ultra-precise holographic beam shaping for microscopic quantum control. , 2016, Optics express.

[10]  D. McKay,et al.  Imaging and addressing of individual fermionic atoms in an optical lattice , 2015, 1510.04744.

[11]  S. Reimann,et al.  Antiferromagnetic Heisenberg Spin Chain of a Few Cold Atoms in a One-Dimensional Trap. , 2015, Physical review letters.

[12]  Andrey E. Antipov,et al.  Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms , 2015, 1505.02290.

[13]  Z. Bai,et al.  Recent advances in determinant quantum Monte Carlo , 2015 .

[14]  M. Greiner,et al.  Site-resolved imaging of fermionic ^{6}Li in an optical lattice. , 2015, Physical review letters.

[15]  Graham D. Bruce,et al.  Single-atom imaging of fermions in a quantum-gas microscope , 2015, Nature Physics.

[16]  David A. Huse,et al.  Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms , 2014, Nature.

[17]  Zhaojun Bai,et al.  Structured Orthogonal Inversion of Block p-Cyclic Matrices on Multicores with GPU Accelerators , 2014, Euro-Par.

[18]  Jun Ye,et al.  Observation of dipolar spin-exchange interactions with lattice-confined polar molecules , 2013, Nature.

[19]  E. Gull,et al.  Equation of state of the fermionic two-dimensional Hubbard model , 2013, 1305.6798.

[20]  T. Schulthess,et al.  Dynamical cluster approximation with continuous lattice self-energy , 2013, 1304.3624.

[21]  Tilman Esslinger,et al.  Short-Range Quantum Magnetism of Ultracold Fermions in an Optical Lattice , 2012, Science.

[22]  R. Scalettar,et al.  Universal probes for antiferromagnetic correlations and entropy in cold fermions on optical lattices , 2012, 1201.5576.

[23]  Alexander L. Gaunt,et al.  Robust Digital Holography For Ultracold Atom Trapping , 2011, Scientific Reports.

[24]  M. Rigol,et al.  Thermodynamics of strongly interacting fermions in two-dimensional optical lattices , 2011, 1104.5494.

[25]  R. Le Targat,et al.  Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices , 2011, Science.

[26]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[27]  R. Glauber,et al.  Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium , 2010, 1010.5099.

[28]  Lu-Ming Duan,et al.  Quantum simulation of frustrated Ising spins with trapped ions , 2010, Nature.

[29]  Daniel J Heinzen,et al.  High-precision laser beam shaping using a binary-amplitude spatial light modulator. , 2010, Applied optics.

[30]  R. Scalettar,et al.  Fermions in 2D optical lattices: temperature and entropy scales for observing antiferromagnetism and superfluidity. , 2009, Physical review letters.

[31]  T. Ho,et al.  Universal Cooling Scheme for Quantum Simulation , 2009, 0911.5506.

[32]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[33]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[34]  Robert Jördens,et al.  A Mott insulator of fermionic atoms in an optical lattice , 2008, Nature.

[35]  R. Glauber,et al.  Fermion and spin counting in strongly correlated systems , 2008, 0802.4276.

[36]  J. Schmiedmayer,et al.  Probing quantum and thermal noise in an interacting many-body system , 2007, 0710.1575.

[37]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[38]  E. Demler,et al.  Quantum noise analysis of spin systems realized with cold atoms , 2006, cond-mat/0609748.

[39]  E. Demler,et al.  Full quantum distribution of contrast in interference experiments between interacting one-dimensional Bose liquids , 2006, cond-mat/0602475.

[40]  E. Demler,et al.  Interference between independent fluctuating condensates. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  A. Lamacraft Noise and counting statistics of insulating phases in one-dimensional optical lattices , 2005, cond-mat/0512580.

[42]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[43]  J. Cirac,et al.  High-temperature superfluidity of fermionic atoms in optical lattices. , 2002, Physical review letters.

[44]  Y. Blanter,et al.  Shot noise in mesoscopic conductors , 1999, cond-mat/9910158.

[45]  A. Sandvik Stochastic series expansion method with operator-loop update , 1999, cond-mat/9902226.

[46]  M. Kastner,et al.  Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La 2-x Sr x CuO 4 , 1998 .

[47]  D. Mahalu,et al.  Direct observation of a fractional charge , 1997, Nature.

[48]  A. Sandvik Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model , 1997, cond-mat/9707123.

[49]  France.,et al.  Observation of the e/3 Fractionally Charged Laughlin Quasiparticle , 1997, cond-mat/9706307.

[50]  B. Su,et al.  Resonant Tunneling in the Quantum Hall Regime: Measurement of Fractional Charge , 1995, Science.

[51]  M. Caffarel,et al.  Monte Carlo calculation of the spin-stiffness of the two-dimensional Heisenberg model , 1993, cond-mat/9310036.

[52]  Ye,et al.  Theory of two-dimensional quantum Heisenberg antiferromagnets with a nearly critical ground state. , 1993, Physical review. B, Condensed matter.

[53]  J. V. Leeuwen,et al.  Spin waves in the half-filled Hubbard model beyond the random phase approximation , 1993 .

[54]  E. Manousakis The spin- 1/2 Heisenberg antiferromagnet on a square lattice and its application to the cuprous oxides , 1991 .

[55]  Schulz Incommensurate antiferromagnetism in the two-dimensional Hubbard model. , 1990, Physical review letters.

[56]  K. Machida Magnetism in La2CuO4 based compounds , 1989 .

[57]  Nelson,et al.  Two-dimensional quantum Heisenberg antiferromagnet at low temperatures. , 1989, Physical review. B, Condensed matter.

[58]  P. Hohenberg Existence of Long-Range Order in One and Two Dimensions , 1967 .

[59]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[60]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.