Investigation of Photovoltaic Properties of Single Core-Shell GaN/InGaN Wires.

We report the investigation of the photovoltaic properties of core-shell GaN/InGaN wires. The radial structure is grown on m-plane {11̅00} facets of self-assembled c̅-axis GaN wires elaborated by metal-organic vapor phase epitaxy (MOVPE) on sapphire substrates. The conversion efficiency of wires with radial shell composed of thick In0.1Ga0.9N layers and of 30× In0.18Ga0.82N/GaN quantum wells are compared. We also investigate the impact of the contact nature and layout on the carrier collection and photovoltaic performances. The contact optimization results in an improved conversion efficiency of 0.33% and a fill factor of 83% under 1 sun (AM1.5G) on single wires with a quantum well-based active region. Photocurrent spectroscopy demonstrates that the response ascribed to the absorption of InGaN/GaN quantum wells appears at wavelengths shorter than 440 nm.

[1]  J. Arbiol,et al.  Probing inhomogeneous composition in core/shell nanowires by Raman spectroscopy , 2014 .

[2]  F. Dimroth,et al.  InP Nanowire Array Solar Cells Achieving 13.8% Efficiency by Exceeding the Ray Optics Limit , 2013, Science.

[3]  Jing Li,et al.  InGaN/GaN multiple quantum well concentrator solar cells , 2010 .

[4]  David Holec,et al.  Equilibrium critical thickness for misfit dislocations in III-nitrides , 2008 .

[5]  S. Denbaars,et al.  Suppressing void defects in long wavelength semipolar (202¯1¯) InGaN quantum wells by growth rate optimization , 2013 .

[6]  Motoaki Iwaya,et al.  Concentrating Properties of Nitride-Based Solar Cells Using Different Electrodes , 2013 .

[7]  Cheolsoo Sone,et al.  Inorganic Optoelectronics: Visible‐Color‐Tunable Light‐Emitting Diodes (Adv. Mater. 29/2011) , 2011 .

[8]  F. Julien,et al.  InGaN/GaN core-shell single nanowire light emitting diodes with graphene-based p-contact. , 2014, Nano letters.

[9]  Yan-Kuin Su,et al.  InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts , 2003 .

[10]  K. S. Narayan,et al.  Correlating reduced fill factor in polymer solar cells to contact effects , 2008 .

[11]  Yuya Tanaka,et al.  Identification of different origins for s-shaped current voltage characteristics in planar heterojunction organic solar cells , 2012 .

[12]  F. Julien,et al.  Experimental and theoretical analysis of transport properties of core–shell wire light emitting diodes probed by electron beam induced current microscopy , 2014, Nanotechnology.

[13]  J. Eymery,et al.  Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration , 2014 .

[14]  John E. Bowers,et al.  High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration , 2014 .

[15]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[16]  Jonathan J. Wierer,et al.  III-nitride core–shell nanowire arrayed solar cells , 2012, Nanotechnology.

[17]  Christopher J. Tassone,et al.  Improving the Reproducibility of P3HT:PCBM Solar Cells by Controlling the PCBM/Cathode Interface , 2009 .

[18]  James S. Speck,et al.  Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells , 2012 .

[19]  J. Eymery,et al.  Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells , 2011 .

[20]  E. Bakkers,et al.  InP nanowire array solar cell with cleaned sidewalls , 2013, 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC).

[21]  Bozhi Tian,et al.  Coaxial Group Iii#nitride Nanowire Photovoltaics , 2009 .

[22]  C. Bougerol,et al.  Effect of the quantum well thickness on the performance of InGaN photovoltaic cells , 2014, 1602.07227.

[23]  H. Morkoç,et al.  Hexagonal-based pyramid void defects in GaN and InGaN , 2012 .

[24]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .

[25]  S. Hersee,et al.  The controlled growth of GaN nanowires. , 2006, Nano letters.

[26]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[27]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[28]  A. Mette,et al.  A review and comparison of different methods to determine the series resistance of solar cells , 2007 .

[29]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[30]  Fu-Rong Chen,et al.  Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films , 1999 .

[31]  J. Eymery,et al.  Self-assembled growth of catalyst-free GaN wires by metal–organic vapour phase epitaxy , 2010, Nanotechnology.

[32]  Stephen J. Pennycook,et al.  Z-contrast stem for materials science , 1989 .

[33]  P. Tchoulfian,et al.  High conductivity in Si-doped GaN wires , 2013 .

[34]  L. Largeau,et al.  Core-shell InGaN/GaN nanowire light emitting diodes analyzed by electron beam induced current microscopy and cathodoluminescence mapping. , 2015, Nanoscale.

[35]  Motoaki Iwaya,et al.  GaInN-Based Solar Cells Using Strained-Layer GaInN/GaInN Superlattice Active Layer on a Freestanding GaN Substrate , 2011 .

[36]  H. Leamy,et al.  Charge collection scanning electron microscopy , 1982 .

[37]  Cheolsoo Sone,et al.  Visible‐Color‐Tunable Light‐Emitting Diodes , 2011, Advanced materials.

[38]  Arnold F. McKinley,et al.  Plasmonics and nanophotonics for photovoltaics , 2011 .

[39]  Katsumi Kishino,et al.  Selective-area growth of GaN nanocolumns on Si(111) substrates for application to nanocolumn emitters with systematic analysis of dislocation filtering effect of nanocolumns , 2015, Nanotechnology.

[40]  B. Schwartz,et al.  Understanding the origin of the S-curve in conjugated polymer/fullerene photovoltaics from drift-diffusion simulations , 2013 .

[41]  James S. Speck,et al.  High performance thin quantum barrier InGaN/GaN solar cells on sapphire and bulk (0001) GaN substrates , 2013 .

[42]  A. Waag,et al.  Growth kinetics and mass transport mechanisms of GaN columns by selective area metal organic vapor phase epitaxy , 2014 .

[43]  Eugene E. Haller,et al.  Small band gap bowing in In1−xGaxN alloys , 2002 .

[44]  James S. Speck,et al.  Effect of doping and polarization on carrier collection in InGaN quantum well solar cells , 2011 .

[45]  J. Anthony,et al.  Copper-phthalocyanine-based organic solar cells with high open-circuit voltage , 2005 .

[46]  D. P. Norman,et al.  PiN InGaN nanorod solar cells with high short-circuit current , 2015 .

[47]  J. Eymery,et al.  Effect of the barrier thickness on the performance of multiple-quantum-well InGaN photovoltaic cells , 2015 .

[48]  J. Eymery,et al.  M-plane core-shell InGaN/GaN multiple-quantum-wells on GaN wires for electroluminescent devices. , 2011, Nano letters.

[49]  James S. Speck,et al.  High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm , 2011 .

[50]  M. Jublot,et al.  Dual-polarity GaN micropillars grown by metalorganic vapour phase epitaxy: Cross-correlation between structural and optical properties , 2014 .