Journal of Experimental Psychology : General The Role of Object Categories in Hybrid Visual and Memory Search

In hybrid search, observers search for any of several possible targets in a visual display containing distracting items and, perhaps, a target. Wolfe (2012) found that response times (RTs) in such tasks increased linearly with increases in the number of items in the display. However, RT increased linearly with the log of the number of items in the memory set. In earlier work, all items in the memory set were unique instances (e.g., this apple in this pose). Typical real-world tasks involve more broadly defined sets of stimuli (e.g., any "apple" or, perhaps, "fruit"). The present experiments show how sets or categories of targets are handled in joint visual and memory search. In Experiment 1, searching for a digit among letters was not like searching for targets from a 10-item memory set, though searching for targets from an N-item memory set of arbitrary alphanumeric characters was like searching for targets from an N-item memory set of arbitrary objects. In Experiment 2, observers searched for any instance of N sets or categories held in memory. This hybrid search was harder than search for specific objects. However, memory search remained logarithmic. Experiment 3 illustrates the interaction of visual guidance and memory search when a subset of visual stimuli are drawn from a target category. Furthermore, we outline a conceptual model, supported by our results, defining the core components that would be necessary to support such categorical hybrid searches.

[1]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[2]  Darryl W. Schneider,et al.  A memory-based model of Hick’s law , 2011, Cognitive Psychology.

[3]  Trafton Drew,et al.  Hybrid search in context: How to search for vegetables in the produce section and cereal in the cereal aisle , 2013, Visual cognition.

[4]  W Bevan,et al.  Target-Set and Response-Set Interaction: Implications for Models of Human Information Processing , 1972, Science.

[5]  W. E. Hick Quarterly Journal of Experimental Psychology , 1948, Nature.

[6]  M. Bravo,et al.  The role of attention in different visual-search tasks , 1992, Perception & psychophysics.

[7]  D. Homa,et al.  Search for Abstracted Information , 1981 .

[8]  Jonathan T. Mall,et al.  Individual differences in working memory capacity , 2013 .

[9]  L. E. Krueger The category effect in visual search depends on physical rather than conceptual differences , 1984, Perception & psychophysics.

[10]  Naomi M. Kenner,et al.  How fast can you change your mind? The speed of top-down guidance in visual search , 2004, Vision Research.

[11]  M. Vidulich,et al.  Retrieval time as a function of memory set size, type of probes, and interference in recognition memory. , 1985 .

[12]  Gregory E. Cox,et al.  Journal of Experimental Psychology : Learning , Memory , and Cognition An Exemplar-Familiarity Model Predicts Short-Term and Long-Term Probe Recognition Across Diverse Forms of Memory Search , 2014 .

[13]  R. Nosofsky,et al.  An exemplar-based random walk model of speeded classification. , 1997, Psychological review.

[14]  Ashley M. Sherman,et al.  Visual search for arbitrary objects in real scenes , 2011, Attention, perception & psychophysics.

[15]  J. Wolfe Moving towards solutions to some enduring controversies in visual search , 2003, Trends in Cognitive Sciences.

[16]  N. Cowan Attention and Memory: An Integrated Framework , 1995 .

[17]  Michael L. Mack,et al.  The Timing of Visual Object Categorization , 2011, Front. Psychology.

[18]  I. Gauthier,et al.  Visual object understanding , 2004, Nature Reviews Neuroscience.

[19]  Corbin A. Cunningham,et al.  Lions or tigers or bears: Oh my! Hybrid visual and memory search for categorical targets , 2012 .

[20]  Denis Cousineau,et al.  Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method , 2005 .

[21]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[22]  Daniel R. Little,et al.  Short-term memory scanning viewed as exemplar-based categorization. , 2011, Psychological review.

[23]  Valerie M. Beck,et al.  Simultaneous Control of Attention by Multiple Working Memory Representations , 2012, Psychological science.

[24]  C. V. Ramamoorthy,et al.  Pipeline Architecture , 1977, CSUR.

[25]  J. Wolfe Saved by a Log , 2012, Psychological science.

[26]  N. Cowan Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. , 1988, Psychological bulletin.

[27]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[28]  Evan M. Palmer,et al.  Signal detection evidence for limited capacity in visual search , 2011, Attention, perception & psychophysics.

[29]  Herbert A. Simon,et al.  THE MIND'S EYE IN CHESS , 1988 .

[30]  R. Shepard Recognition memory for words, sentences, and pictures , 1967 .

[31]  R. Haber,et al.  Perception and memory for pictures: Single-trial learning of 2500 visual stimuli , 1970 .

[32]  Michael L. Mack,et al.  Time course of visual object categorization: Fastest does not necessarily mean first , 2009, Vision Research.

[33]  M. Kiefer,et al.  Cognitive Neuroscience: Tracking the time course of object categorization using event-related potentials , 1999 .

[34]  The nature and timing of the retrieval process and of interference effects. , 1981 .

[35]  U NEISSER,et al.  Searching for Ten Targets Simultaneously , 1963, Perceptual and motor skills.

[36]  Marilyn L. Shaw,et al.  Visual search in multicharacter arrays with and without gaps , 1979 .

[37]  Stephen M. Kosslyn,et al.  Pictures and names: Making the connection , 1984, Cognitive Psychology.

[38]  L. Standing Learning 10000 pictures , 1973 .

[39]  J. Tanaka,et al.  Object categories and expertise: Is the basic level in the eye of the beholder? , 1991, Cognitive Psychology.

[40]  Matthew P. Gerrie,et al.  Individual differences in working memory capacity and visual search: The roles of top-down and bottom-up processing , 2007, Psychonomic bulletin & review.

[41]  Endel Tulving,et al.  Encoding specificity and retrieval processes in episodic memory. , 1973 .

[42]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[43]  Karl R Gegenfurtner,et al.  Parallel visual search and rapid animal detection in natural scenes. , 2011, Journal of vision.

[44]  Thomas J. Palmeri,et al.  An Exemplar-Based Random Walk Model of Speeded Classification , 1997 .

[45]  K. Nakayama,et al.  Priming of pop-out: I. Role of features , 1994, Memory & cognition.

[46]  Jeremy M. Wolfe,et al.  Guided Search 4.0: Current Progress With a Model of Visual Search , 2007, Integrated Models of Cognitive Systems.

[47]  H. Egeth,et al.  Effects of top-down guidance and singleton priming on visual search , 2006, Psychonomic bulletin & review.

[48]  M. Manosevitz,et al.  High-Speed Scanning in Human Memory , 2022 .

[49]  Edward L. Bennett,et al.  Short-term, intermediate-term, and long-term memories , 1993, Behavioural Brain Research.

[50]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[51]  Delos D. Wickens,et al.  The nature and timing of the retrieval process and of interference effects. , 1981 .

[52]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[53]  J. Meere The role of attention. , 2002 .

[54]  L. Standing Learning 10,000 pictures. , 1973, The Quarterly journal of experimental psychology.

[55]  D Burrows,et al.  Memory Retrieval from Long and Short Lists , 1975, Science.

[56]  Howard E. Egeth,et al.  Parallel processing of multielement displays , 1972 .

[57]  R. Shiffrin,et al.  Controlled and automatic human information processing: I , 1977 .

[58]  J. Hoffman,et al.  Recognition memory and attentional selection: serial scanning is not enough. , 1986, Journal of experimental psychology. Human perception and performance.

[59]  Timothy F. Brady,et al.  Conceptual Distinctiveness Supports Detailed Visual Long-term Memory for Real-world Objects the Fidelity of Long-term Memory for Visual Information , 2022 .

[60]  M. Kane,et al.  Working-memory capacity predicts the executive control of visual search among distractors: The influences of sustained and selective attention , 2009, Quarterly journal of experimental psychology.

[61]  Jeremy M Wolfe,et al.  When Categories Collide , 2011, Psychological science.

[62]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[63]  Timothy F. Brady,et al.  Scene Memory Is More Detailed Than You Think : The Role of Categories in Visual Long-Term Memory , 2010 .

[64]  J. Duncan Category effects in visual search: A failure to replicate the “oh-zero” phenomenon , 1983, Perception & psychophysics.

[65]  J. A. Deutsch,et al.  On the category effect in visual search , 1977 .

[66]  Denis Cousineau,et al.  Visual-memory search: An integrative perspective , 2004, Psychological research.

[67]  William K. Estes,et al.  Human Learning and Memory , 1984 .

[68]  Gregory J. Zelinsky,et al.  Visual search is guided to categorically-defined targets , 2009, Vision Research.

[69]  Todd S. Horowitz,et al.  Visual search has no memory , 1998, Nature.

[70]  H. Simon,et al.  The mind's eye in chess. , 1973 .

[71]  Jeremy M Wolfe,et al.  Searching for the right word: Hybrid visual and memory search for words , 2014, Attention, perception & psychophysics.

[72]  S. Monsell Recency, immediate recognition memory, and reaction time , 1978, Cognitive Psychology.

[73]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[74]  Walter Schneider,et al.  Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. , 1977 .

[75]  N. Cowan The magical number 4 in short-term memory: A reconsideration of mental storage capacity , 2001, Behavioral and Brain Sciences.

[76]  A. Baddeley The episodic buffer: a new component of working memory? , 2000, Trends in Cognitive Sciences.

[77]  Aude Oliva,et al.  Visual long-term memory has a massive storage capacity for object details , 2008, Proceedings of the National Academy of Sciences.

[78]  E. Vogel,et al.  Visual Search Demands Dictate Reliance upon Working Memory Storage , 2011 .

[79]  I. Gauthier,et al.  An analysis of letter expertise in a levels-of-categorization framework , 2007 .

[80]  Yuhong Jiang,et al.  Setting up the target template in visual search. , 2005, Journal of vision.

[81]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[82]  G. Humphreys,et al.  Working memory and target-related distractor effects on visual search , 2010, Memory & cognition.

[83]  Thad A Polk,et al.  Category-level contributions to the alphanumeric category effect in visual search , 2006, Psychonomic bulletin & review.

[84]  M. Kilwein,et al.  Basic objects in natural categories revisited : a replication with sighted and blind college students / , 1993 .

[85]  G. Humphreys,et al.  Early, involuntary top-down guidance of attention from working memory. , 2005, Journal of experimental psychology. Human perception and performance.

[86]  P. Roelfsema,et al.  Different States in Visual Working Memory: When It Guides Attention and When It Does Not , 2022 .

[87]  Sarah Walker,et al.  Ultra-rapid categorization requires visual attention: Scenes with multiple foreground objects. , 2008, Journal of vision.

[88]  Jeremy M. Wolfe,et al.  Searching for the right word: Hybrid visual and memory search for words , 2014 .

[89]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[90]  E. Tulving,et al.  Episodic and semantic memory , 1972 .

[91]  J L McGaugh,et al.  Time-Dependent Processes in Memory Storage , 1966, Science.

[92]  K. A. Ericsson,et al.  Long-term working memory. , 1995, Psychological review.