Visualization in multiobjective optimization

[1]  Tea Tusar,et al.  A taxonomy of methods for visualizing pareto front approximations , 2018, GECCO.

[2]  Christina Bloebaum,et al.  Hyper-Radial Visualization (HRV) method with range-based preferences for multi-objective decision making , 2009 .

[3]  J W Wallis,et al.  Three-dimensional display in nuclear medicine. , 1989, IEEE transactions on medical imaging.

[4]  Gary G. Yen,et al.  Visualization and Performance Metric in Many-Objective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[5]  Tea Tusar,et al.  Visualization of Pareto Front Approximations in Evolutionary Multiobjective Optimization: A Critical Review and the Prosection Method , 2015, IEEE Transactions on Evolutionary Computation.

[6]  Jonathan E. Fieldsend,et al.  Visualising High-Dimensional Pareto Relationships in Two-Dimensional Scatterplots , 2013, EMO.

[7]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[8]  Xavier Blasco Ferragud,et al.  Asymmetric distances to improve n-dimensional Pareto fronts graphical analysis , 2016, Inf. Sci..

[9]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[10]  Timo Ropinski,et al.  Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based Volume Visualizations , 2009, IEEE Computer Graphics and Applications.

[11]  Shahryar Rahnamayan,et al.  3D-RadVis: Visualization of Pareto front in many-objective optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[12]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[13]  Dario Landa Silva,et al.  Analysis of Objectives Relationships in Multiobjective Problems Using Trade-Off Region Maps , 2015, GECCO.

[14]  Xavier Blasco Ferragud,et al.  A new graphical visualization of n-dimensional Pareto front for decision-making in multiobjective optimization , 2008, Inf. Sci..

[15]  Michael E. Tipping,et al.  Feed-forward neural networks and topographic mappings for exploratory data analysis , 1996, Neural Computing & Applications.

[16]  Sanaz Mostaghim,et al.  Heatmap Visualization of Population Based Multi Objective Algorithms , 2007, EMO.

[17]  David P. Pancho,et al.  moGrams: A Network-Based Methodology for Visualizing the Set of Nondominated Solutions in Multiobjective Optimization , 2015, IEEE Transactions on Cybernetics.

[18]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[19]  Joshua D. Knowles A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[20]  Thomas Stützle,et al.  Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[21]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[22]  Jonathan E. Fieldsend,et al.  Multi-class ROC analysis from a multi-objective optimisation perspective , 2006, Pattern Recognit. Lett..

[23]  Jonathan E. Fieldsend,et al.  Visualizing Mutually Nondominating Solution Sets in Many-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[24]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[25]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[26]  Daisuke Sasaki,et al.  Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map , 2003, EMO.

[27]  Teuvo Kohonen,et al.  Self-Organizing Maps, Third Edition , 2001, Springer Series in Information Sciences.

[28]  Carlos M. Fonseca,et al.  Greedy Hypervolume Subset Selection in Low Dimensions , 2016, Evolutionary Computation.

[29]  Furuhashi Takeshi,et al.  Study on effect of MOGA with interactive island model using visualization , 2010, IEEE Congress on Evolutionary Computation.

[30]  Julio J. Valdés,et al.  Visualizing high dimensional objective spaces for multi-objective optimization: A virtual reality approach , 2007, 2007 IEEE Congress on Evolutionary Computation.

[31]  Kiam Heong Ang,et al.  VISUALIZATION TECHNIQUE FOR ANALYZING NON-DOMINATED SET COMPARISON , 2003 .

[32]  Frederico G. Guimarães,et al.  Aggregation Trees for visualization and dimension reduction in many-objective optimization , 2015, Inf. Sci..

[33]  Frederico G. Guimarães,et al.  A new visualization method in many-objective optimization with chord diagram and angular mapping , 2017, Knowl. Based Syst..

[34]  Günter Rudolph,et al.  Understanding Complexity in Multiobjective Optimization (Dagstuhl Seminar 15031) , 2015, Dagstuhl Reports.

[35]  Anne Auger,et al.  Quantitative Performance Assessment of Multiobjective Optimizers: The Average Runtime Attainment Function , 2017, EMO.

[36]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[37]  Rajendra Akerkar,et al.  Knowledge Based Systems , 2017, Encyclopedia of GIS.

[38]  Bogdan Filipič,et al.  Visualizing Exact and Approximated 3D Empirical Attainment Functions , 2014 .

[39]  Kemper Lewis,et al.  Intuitive Design Selection using Visualized n-Dimensional Pareto Frontier , 2005 .

[40]  Bo Li,et al.  The Visualization Decision-making Model of Four Objectives Based on the Balance of Space Vector , 2012, 2012 4th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[41]  Mario Köppen,et al.  Visualization of Pareto-Sets in Evolutionary Multi-Objective Optimization , 2007, 7th International Conference on Hybrid Intelligent Systems (HIS 2007).

[42]  David J. Walker,et al.  Visualising Multi-objective Populations with Treemaps , 2015, GECCO.

[43]  Jonathan E. Fieldsend,et al.  Visualisation and ordering of many-objective populations , 2010, IEEE Congress on Evolutionary Computation.

[44]  Alexander V. Lotov,et al.  Interactive Decision Maps: Approximation and Visualization of Pareto Frontier , 2004 .

[45]  George I. N. Rozvany,et al.  Structural and Multidisciplinary Optimization , 1995 .

[46]  Tomohiro Yoshikawa,et al.  Knowledge extraction in multi-objective optimization problem based on visualization of Pareto solutions , 2012, 2012 IEEE Congress on Evolutionary Computation.

[47]  Kaisa Miettinen,et al.  Survey of methods to visualize alternatives in multiple criteria decision making problems , 2012, OR Spectrum.