High-resolution 3D-seismic data indicate focussed fluid migration pathways above polygonal fault systems of the mid-Norwegian margin

Seismic attribute analysis and interpretation of high-resolution 3D- and 2D-seismic data reveal focussed fluid flow processes through the gas hydrate stability zone (GHSZ) at the northern flank of the giant Storegga Slide. Diffusive fluid migration predominantly starts from a widespread polygonal fault system in fine-grained sediments of the Miocene Kai Formation. The overlying 600–700 m thick Plio–Pleistocene Naust Formation shows spatially related soft-sediment deformation and overlying fluid conduits. A low relief antiform structure connects to an overlying 250 m high, 300 m wide and 3 km elongated columnar zone, where seismic signatures suggest self-enhanced permeability, i.e. natural hydraulic fracturing. “Push-down” effects create an elongated depression caused by increased gas accumulations where a cluster of vertical cylindrical acoustic pipe structures originates. These pipe clusters pierce the GHSZ and indicate focussed fluid flow pathways originating from potentially overpressured sediments. High seismic reflection amplitudes at the seafloor above the pipe structures may indicate pockmarks with authigenic carbonates and/or gas hydrates. The observed objects and seismic features presented are not stand-alone indicators for fluid flow, but a joint perspective illustrates that they are vertically tied together providing new insights to the effects of focussed fluid flow.

[1]  M. Hovland,et al.  Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea , 2006 .

[2]  J. Nunn,et al.  Episodic fluid expulsion from geopressured sediments , 1995 .

[3]  C. Berndt,et al.  Cessation/reactivation of polygonal faulting and effects on fluid flow in the Vøring Basin, Norwegian Margin , 2007, Journal of the Geological Society.

[4]  J. Parnell,et al.  Integrated petrographic and geochemical record of hydrocarbon seepage on the Vøring Plateau , 2005, Journal of the Geological Society.

[5]  E. Vågnes,et al.  Late Cretaceous–Cenozoic intraplate contractional deformation at the Norwegian continental shelf: timing, magnitude and regional implications , 1998 .

[6]  J. Cartwright,et al.  Layer-bound compaction faults in fine-grained sediments , 1998 .

[7]  J. Ramsay Folding and fracturing of rocks , 1967 .

[8]  A. J. Bolton,et al.  How sediments become mobilized , 2003, Geological Society, London, Special Publications.

[9]  O. Eldholm,et al.  Tectonism and magmatism during NE Atlantic continental break-up: the Vøring Margin , 1992, Geological Society, London, Special Publications.

[10]  P. Bryn,et al.  Neogene and Quaternary depositional environments on the Norwegian continental margin, 62°N–68°N , 2004 .

[11]  O. Eldholm,et al.  Vøring Plateau diapir fields and their structural and depositional settings , 1997 .

[12]  V. Spiess,et al.  Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing , 2004 .

[13]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[14]  J. Cartwright,et al.  Volumetric contraction during the compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems , 1996 .

[15]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[16]  P. Vogt Hummock fields in the Norway Basin and Eastern Iceland Plateau: Rayleigh-Taylor instabilities? , 1997 .

[17]  Stefan Bünz,et al.  Fluid flow impact on slope failure from 3D seismic data: a case study in the Storegga Slide , 2005 .

[18]  H. Brekke The tectonic evolution of the Norwegian Sea Continental Margin with emphasis on the Vøring and Møre Basins , 2000, Geological Society, London, Special Publications.

[19]  J. Greinert,et al.  Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin , 1999 .

[20]  Anders Solheim,et al.  The Storegga Slide complex: repetitive large scale sliding with similar cause and development , 2005 .

[21]  J. Mienert,et al.  Changes in the Hydrate Stability Zone on the Norwegian Margin and their Consequence for Methane and Carbon Releases Into the Oceanosphere , 2001 .

[22]  Neil H. Kenyon,et al.  Evidence for long-term instability in the Storegga Slide region off western Norway , 1996 .

[23]  P. Bryn,et al.  Pleistocene development of the SE Nordic Seas margin , 2004 .

[24]  G. Mével,et al.  in marine sediments , 1981 .

[25]  Alan Judd,et al.  Seabed pockmarks and seepages : impact on geology, biology and the marine environment , 1988 .

[26]  Woo-Yeol Jung,et al.  Holocene mass wasting on upper non‐Polar continental slopes—due to post‐Glacial ocean warming and hydrate dissociation? , 2002 .

[27]  M. Vanneste,et al.  Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the Vøring Plateau, offshore Norway , 2000 .

[28]  Harald Johansen,et al.  Complex pockmarks with carbonate-ridges off mid-Norway: Products of sediment degassing , 2005 .

[29]  M. King Hubbert,et al.  Mechanics of Hydraulic Fracturing , 1972 .

[30]  E. Lundin,et al.  Cenozoic compressional structures on the NE Atlantic margin; nature, origin and potential significance for hydrocarbon exploration , 1996, Petroleum Geoscience.

[31]  M. Hovland,et al.  Submarine pingoes: Indicators of shallow gas hydrates in a pockmark at Nyegga, Norwegian Sea , 2006 .

[32]  E. Kozlova,et al.  First sampling of gas hydrate from the Voring Plateau , 2007 .

[33]  G. Vasseur,et al.  Natural hydraulic cracking: numerical model and sensitivity study , 2002 .

[34]  E. L. Drezen,et al.  Premiers résultats d'une étude géophysique sur le flanc nord des glissements de Storegga (Norvège) , 2004 .

[35]  A. Malthe-Sørenssen,et al.  Release of methane from a volcanic basin as a mechanism for initial Eocene global warming , 2004, Nature.

[36]  J. Mienert,et al.  Polygonal fault systems on the mid-Norwegian margin: a long-term source for fluid flow , 2003, Geological Society, London, Special Publications.

[37]  B. T. Larsen,et al.  Base Pliocene velocity inversion on the eastern Vøring margin— causes and implications , 1996 .

[38]  P. Cochonat,et al.  Isolated seafloor pockmarks linked to BSRs, fluid chimneys, polygonal faults and stacked Oligocene-Miocene turbiditic palaeochannels in the Lower Congo Basin , 2006 .

[39]  J. Mienert,et al.  Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga Slide , 2005 .

[40]  L. Dimitrov,et al.  Mud volcanoes—the most important pathway for degassing deeply buried sediments , 2002 .

[41]  C. Ruppel,et al.  Permeability evolution during the formation of gas hydrates in marine sediments , 2003 .

[42]  J. Cartwright,et al.  Giant hummocks in deep-water marine sediments: Evidence for large-scale differential compaction and density inversion during early burial , 1999 .

[43]  L. Rise,et al.  Large-scale development of the mid-Norwegian margin during the last 3 million years , 2005 .

[44]  J. Mienert,et al.  Gas hydrates along the northeastern Atlantic margin: possible hydrate-bound margin instabilities and possible release of methane , 1998, Geological Society, London, Special Publications.

[45]  Anders Solheim,et al.  Ormen Lange—an integrated study for the safe development of a deep-water gas field within the Storegga Slide Complex, NE Atlantic continental margin; executive summary , 2005 .

[46]  A. Hurst,et al.  Fluid escape from reservoirs: implications fromcold seeps, fractures and injected sands Part I. The fluid flow system , 2003 .

[47]  N. Kenyon,et al.  The Storegga slide , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[48]  J. Mienert,et al.  Acoustic imaging of gas hydrate and free gas at the Storegga Slide , 2004 .

[49]  J. Henriet,et al.  Seismic facies and clay tectonic features of the Ypresian clay in the southern North Sea , 1988 .

[50]  O. Eldholm,et al.  Cenozoic evolution of the northern Vøring margin , 1999 .

[51]  J. Mienert,et al.  Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin , 2003 .

[52]  Hitoshi Tomaru,et al.  Ethane enrichment and propane depletion in subsurface gases indicate gas hydrate occurrence in marine sediments at southern Hydrate Ridge offshore Oregon , 2004 .

[53]  P. Bryn,et al.  Late Cenozoic glacial history and evolution of the Storegga Slide area and adjacent slide flank regions, Norwegian continental margin , 2005 .

[54]  A. Nur,et al.  Sediments with gas hydrates; internal structure from seismic AVO , 1998 .

[55]  C. Berndt Focused fluid flow in passive continental margins , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  N. Goulty,et al.  Development of polygonal fault systems: a test of hypotheses , 2005, Journal of the Geological Society.

[57]  H. Sejrup,et al.  Late Quaternary seismic stratigraphy and geological development of the south Vøring margin, Norwegian Sea , 2004 .

[58]  V. A. Soloviev,et al.  Worldwide distribution of subaquatic gas hydrates , 1993 .

[59]  B. Maclean,et al.  Pockmarks on the Scotian Shelf , 1970 .

[60]  K. Kvenvolden Gas hydrates—geological perspective and global change , 1993 .

[61]  Warren T. Wood,et al.  Methane Hydrate and Free Gas on the Blake Ridge from Vertical Seismic Profiling , 1996, Science.

[62]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[63]  D. Roux,et al.  Sismique marine haute résolution 3D : un nouvel outil de reconnaissance à destination de la communauté scientifique , 2004 .

[64]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[65]  D. Secor Role of Fluid Pressure in Jointing , 1965, American Journal of Science.