First Measurement of Differential Charged Current Quasielasticlike ν_{μ}-Argon Scattering Cross Sections with the MicroBooNE Detector.

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{μ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{μ},μp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target. Events are selected to enhance the contribution of CC quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single differential cross sections in final state muon and proton kinematics. We measure the integrated per-nucleus CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection threshold) of (4.93±0.76_{stat}±1.29_{sys})×10^{-38}  cm^{2}, in good agreement with theoretical calculations. The single differential cross sections are also in overall good agreement with theoretical predictions, except at very forward muon scattering angles that correspond to low-momentum-transfer events.

R. K. Neely | J. I. Crespo-Anadón | M. Convery | V. Radeka | K. Mason | J. Conrad | M. Murphy | A. Ereditato | G. Cerati | T. Bolton | M. Mooney | S. Gollapinni | J. Asaadi | H. Greenlee | W. Ketchum | M. Kirby | Y. Tsai | J. Zennamo | S. Wolbers | T. Yang | T. Usher | P. Spentzouris | M. Bishai | M. Rosenberg | D. Franco | B. Viren | W. Wu | M. Tutto | E. Church | R. Guenette | M. Wospakrik | L. Ren | A. Marchionni | G. Barr | G. Zeller | K. Mistry | S. Prince | M. Weber | H. Wei | O. Palamara | V. Paolone | R. Johnson | P. Nienaber | D. Naples | L. Camilleri | G. Horton-Smith | M. Shaevitz | J. Spitz | K. Terao | M. Toups | S. Balasubramanian | C. Zhang | W. Louis | N. Tagg | S. Dytman | P. Guzowski | B. Kirby | I. Kreslo | J. Nowak | J. Raaf | T. Strauss | T. Wongjirad | Y. Chen | W. Gu | X. Ji | B. Littlejohn | X. Qian | B. Baller | F. Cavanna | B. Fleming | C. James | G. Karagiorgi | J. Marshall | C. Moore | Ž. Pavlović | L. Rochester | D. Schmitz | M. Soderberg | M. Stancari | A. Szelc | S. Soldner-Rembold | A. Blake | J. Evans | S. Tufanli | S. Berkman | K. Duffy | A. Furmanski | P. Hamilton | J. H. Jo | I. Lepetic | A. Schukraft | R. An | N. Foppiani | E. Gramellini | C. Barnes | A. Hourlier | R. Sharankova | E. Huang | D. M. Caicedo | W. Tang | N. McConkey | B. Eberly | J. Mousseau | P. Green | S. Gardiner | A. Papadopoulou | V. Basque | D. Caratelli | I. C. Terrazas | R. Diurba | L. Dominé | L. E. Sanchez | R. Fitzpatrick | D. Garcia-Gamez | O. Goodwin | R. Itay | L. Jiang | Y. Jwa | R. LaZur | D. Lorca | X. Luo | J. Martín-Albo | A. Mastbaum | J. Mills | T. Mohayai | J. Moon | A. Moor | A. Paudel | A. Rafique | M. Reggiani-Guzzo | J. Rondon | H. Rogers | B. Russell | J. Sinclair | A. Smith | M. Uchida | Z. Williams | R. Dorrill | P. Abratenko | M. Alrashed | J. Anthony | A. Ashkenazi | L. Bathe-Peters | A. Bhanderi | A. Bhat | D. Cianci | E. Cohen | L. Cooper-Troendle | D. Devitt | L. Gu | E. Hall | O. Hen | N. Kamp | T. Kobilarcik | K. Li | Y. Li, | S. Marcocci | V. Meddage | T. Mettler | K. Miller | A. Mogan | A. Navrer-Agasson | S. Pate | E. Piasetzky | I. Ponce-Pinto | D. Porzio | M. Ross-Lonergan | G. Scanavini | E. Snider | J. S. John | K. Sutton | S. Sword-Fehlberg | R. Thornton | C. Thorpe | G. Yarbrough | L. Yates | R. C. Fernández | J. J. Vries | W. V. D. Pontseele | R. G. Water | O. Rodrigues | Vicky Papavassiliou | G. A. F. Aguirre | C. Marsden | Z. Pavlovic | Rui An | R. Neely | J. J. D. Vries | J. Conrad | J. John | Y. Li | J. Jo | K. Li | J. Evans | C. Zhang | S. Pate | D. A. Caicedo

[1]  A. Ashkenazi,et al.  Recent highlights from GENIE v3 , 2021, The European Physical Journal Special Topics.

[2]  Jorge S. Díaz,et al.  Volume III. DUNE far detector technical coordination , 2020, Journal of Instrumentation.

[3]  Jorge S. Díaz,et al.  Volume IV. The DUNE far detector single-phase technology , 2020, Journal of Instrumentation.

[4]  The Super-Kamiokande Collaboration Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations , 2020 .

[5]  V. P. Luzio,et al.  Volume I. Introduction to DUNE , 2020, Journal of Instrumentation.

[6]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume III DUNE Far Detector Technical Coordination , 2020, 2002.03008.

[7]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV Far Detector Single-phase Technology , 2020, 2002.03010.

[8]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.

[9]  D. A. Andrade,et al.  High-Statistics Measurement of Neutrino Quasielasticlike Scattering at 6 GeV on a Hydrocarbon Target. , 2019, Physical review letters.

[10]  M. Hartz,et al.  Constraint on the Matter-Antimatter Symmetry-Violating Phase in Neutrino Oscillations. , 2019, 1910.03887.

[11]  MicroBooNE collaboration C. Adams,et al.  Calibration of the charge and energy loss per unit length of the MicroBooNE liquid argon time projection chamber using muons and protons , 2019, Journal of Instrumentation.

[12]  D. A. Wickremasinghe,et al.  Rejecting cosmic background for exclusive charged current quasi elastic neutrino interaction studies with Liquid Argon TPCs; a case study with the MicroBooNE detector , 2019, The European Physical Journal C.

[13]  D. A. Wickremasinghe,et al.  First Measurement of Inclusive Muon Neutrino Charged Current Differential Cross Sections on Argon at E_{ν}∼0.8  GeV with the MicroBooNE Detector. , 2019, Physical review letters.

[14]  U. Mosel Neutrino event generators: foundation, status and future , 2019, Journal of Physics G: Nuclear and Particle Physics.

[15]  A. Bodek,et al.  Removal energies and final state interaction in lepton nucleus scattering , 2018, The European Physical Journal C.

[16]  Upgrade of the ICARUS T600 Time Projection Chamber , 2018, Journal of Physics: Conference Series.

[17]  C. D. Moore,et al.  Ionization electron signal processing in single phase LArTPCs. Part II. Data/simulation comparison and performance in MicroBooNE , 2018, Journal of Instrumentation.

[18]  M. Hartz,et al.  Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charged-current pionless interactions at T2K , 2018, Physical Review D.

[19]  C. D. Moore,et al.  The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector , 2017, The European Physical Journal C.

[20]  Nuruzzaman,et al.  Direct Measurement of Nuclear Dependence of Charged Current Quasielasticlike Neutrino Interactions Using MINERvA. , 2017, Physical review letters.

[21]  E. L. Snider,et al.  LArSoft: toolkit for simulation, reconstruction and analysis of liquid argon TPC neutrino detectors , 2017 .

[22]  C. D. Moore,et al.  Determination of muon momentum in the MicroBooNE LArTPC using an improved model of multiple Coulomb scattering , 2017, 1703.06187.

[23]  D. A. Wickremasinghe,et al.  Design and Construction of the MicroBooNE Detector , 2016, 1612.05824.

[24]  Y. Hayato,et al.  NUISANCE: a neutrino cross-section generator tuning and comparison framework , 2016, 1612.07393.

[25]  Ruth Pordes,et al.  The Liquid Argon Software Toolkit (LArSoft): Goals, Status and Plan , 2016 .

[26]  Nuruzzaman,et al.  Neutrino flux predictions for the NuMI beam , 2016, 1607.00704.

[27]  R. Gran,et al.  GENIE implementation of IFIC Valencia model for QE-like 2p2h neutrino-nucleus cross section , 2016, 1601.02038.

[28]  Julia Yarba,et al.  The GENIE Neutrino Monte Carlo Generator: Physics and User Manual , 2015, 1510.05494.

[29]  A. Rappoldi,et al.  A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam , 2015, 1503.01520.

[30]  M. Hartz,et al.  Measurement of the nu(mu) charged-current quasielastic cross section on carbon with the ND280 detector at T2K , 2014, 1411.6264.

[31]  A. Bodek,et al.  Measurement of muon plus proton final states in νμ interactions on hydrocarbon at Eν =4.2GeV , 2014, 1409.4497.

[32]  O. Lalakulich,et al.  Energy reconstruction in the long-baseline neutrino experiment. , 2013, Physical review letters.

[33]  D. Kaleko PMT Triggering and Readout for the MicroBooNE Experiment , 2013, 1308.3446.

[34]  G Tzanakos,et al.  Measurement of muon neutrino quasielastic scattering on a hydrocarbon target at Eν ~ 3.5 GeV. , 2013, Physical review letters.

[35]  G Tzanakos,et al.  Measurement of muon antineutrino quasielastic scattering on a hydrocarbon target at Eν ~ 3.5 GeV. , 2013, Physical review letters.

[36]  T. Katori Meson Exchange Current (MEC) Models in Neutrino Interaction Generators , 2013, 1304.6014.

[37]  D. A. Wickremasinghe,et al.  First measurement of the muon antineutrino double-differential charged-current quasielastic cross section , 2013, 1301.7067.

[38]  A.Longhin,et al.  T2K neutrino flux prediction , 2012, 1211.0469.

[39]  G. P. Zeller,et al.  From eV to EeV: Neutrino Cross Sections Across Energy Scales , 2012, 1305.7513.

[40]  Tejpreet Singh Golan,et al.  NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions , 2012 .

[41]  J. Nieves,et al.  Neutrino Energy Reconstruction and the Shape of the CCQE-like Total Cross Section , 2012, 1204.5404.

[42]  C. Bromberg,et al.  First measurements of inclusive muon neutrino charged current differential cross sections on argon. , 2011, Physical review letters.

[43]  A. Bodek,et al.  Neutrino quasielastic scattering on nuclear targets , 2011, 1106.0340.

[44]  K. Mahn,et al.  Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam , 2010, 1011.2131.

[45]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[46]  J. Nowak Four momentum transfer discrepancy in the charged current πplus; production in the MiniBooNE:data vs. theory , 2009, 0909.3659.

[47]  Y. Hayato A neutrino interaction simulation program library NEUT , 2009 .

[48]  K. Graczyk,et al.  C(5)**A axial form factor from bubble chamber experiments , 2009, 0908.2175.

[49]  K. Graczyk,et al.  Erratum: Form factors in the quark resonance model [Phys. Rev. D 77, 053001 (2008)] , 2009 .

[50]  C. D. Moore,et al.  Neutrino flux prediction at MiniBooNE , 2008, 0806.1449.

[51]  C. Berger,et al.  Partially conserved axial vector current and coherent pion production by low energy neutrinos , 2008, 0812.2653.

[52]  C. Berger,et al.  PCAC and coherent pion production by low energy neutrinos , 2008, 0812.2653.

[53]  K. Graczyk,et al.  Form Factors in the Quark Resonance Model , 2007, 0707.3561.

[54]  C. Berger,et al.  Lepton mass effects in single pion production by neutrinos , 2007, 0709.4378.

[55]  B. Roe Statistical errors in Monte Carlo estimates of systematic errors , 2007 .

[56]  L. Alvarez-Ruso,et al.  Charged current neutrino-nucleus interactions at intermediate energies , 2006, nucl-th/0601103.

[57]  S. Mashnik,et al.  CEM03 and LAQGSM03?new modeling tools for nuclear applications , 2005, nucl-th/0510070.

[58]  E. Oset,et al.  Inclusive quasi-elastic neutrino reactions , 2005, nucl-th/0503023.

[59]  J. Nieves,et al.  Inclusive quasielastic charged-current neutrino-nucleus reactions , 2004, nucl-th/0408005.

[60]  Moscow,et al.  LEPTON POLARIZATION IN NEUTRINO–NUCLEON INTERACTIONS , 2003, hep-ph/0312107.

[61]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[62]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[63]  J. Knapp,et al.  CORSIKA: A Monte Carlo code to simulate extensive air showers , 1998 .

[64]  J. Engel Approximate treatment of lepton distortion in charged-current neutrino scattering from nuclei , 1997, nucl-th/9711045.

[65]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[66]  E. Oset,et al.  Interaction of real photons with nuclei from 100 to 500 MeV , 1992 .

[67]  H. J. Pfeiffer,et al.  True Absorption and Scattering of Pions on Nuclei , 1981 .

[68]  D. Rein,et al.  Neutrino Excitation of Baryon Resonances and Single Pion Production , 1981 .

[69]  C. H. Smith Neutrino reactions at accelerator energies , 1972 .