Excellent Light Confinement of Hemiellipsoid- and Inverted Hemiellipsoid-Modified Semiconductor Nanowire Arrays

In this paper, we introduce hemiellipsoid- and inverted hemiellipsoid-modified semiconductor nanowire (NW) optical structures, and present a systematic investigation on light management of the corresponding arrays based on GaAs. It is found that the modification makes well utilization of light scattering and antireflection, thus leading to excellent light confinement with limited effective thickness. For example, 90% and 95% of the incident photons with the energy larger than the bandgap energy can be trapped by the inverted hemiellipsoid-modified NW arrays with the effective thicknesses of only ~ 180 and 270 nm, respectively. Moreover, excellent light confinement can be achieved in a broad range of the modification height. Compared to the corresponding array without top modification, spatial distribution of the photo-generated carriers is expanded, facilitating carrier collection especially for the planar pn junction configuration. Further investigation indicates that these composite nanostructures possess excellent omnidirectional light confinement, which is expected for advanced solar absorbers.

[1]  Yi Cui,et al.  All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency , 2013, Nature Communications.

[2]  D. He,et al.  Radial junction Si micro/nano-wire array photovoltaics: Recent progress from theoretical investigation to experimental realization , 2014 .

[3]  Pingqi Gao,et al.  High-Performance Black Multicrystalline Silicon Solar Cells by a Highly Simplified Metal-Catalyzed Chemical Etching Method , 2016, IEEE Journal of Photovoltaics.

[4]  A. Menzel,et al.  Field-effect passivation on silicon nanowire solar cells , 2015, Nano Research.

[5]  D. He,et al.  Nanostructured semiconductor solar absorbers with near 100% absorption and related light management picture , 2016 .

[6]  E. Fortunato,et al.  Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells , 2016 .

[7]  D. He,et al.  Wedge-shaped semiconductor nanowall arrays with excellent light management. , 2017, Optics letters.

[8]  Junshuai Li,et al.  Enhancing Open-Circuit Voltage of Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells With Ag Substitution , 2017, IEEE Journal of Photovoltaics.

[9]  Pingqi Gao,et al.  Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells , 2016, Nanoscale Research Letters.

[10]  Winfried Hoffmann,et al.  PV solar electricity industry: Market growth and perspective , 2006 .

[11]  N. Singh,et al.  Boosting Short-Circuit Current With Rationally Designed Periodic Si Nanopillar Surface Texturing for Solar Cells , 2011, IEEE Transactions on Electron Devices.

[12]  Jingshan Luo,et al.  Enhanced light absorption of thin perovskite solar cells using textured substrates , 2017 .

[13]  Linyou Cao,et al.  Engineering light absorption in semiconductor nanowire devices. , 2009, Nature materials.

[14]  Guo-Qiang Lo,et al.  Surface nanostructure optimization for solar energy harvesting in Si thin film based solar cells , 2009, International Electron Devices Meeting.

[15]  Jin-Young Jung,et al.  Beneficial roles of Al back reflectors in optical absorption of Si nanowire array solar cells , 2013 .

[16]  Jan Benick,et al.  Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping , 2016 .

[17]  W. Shen,et al.  All‐Solution‐Processed Random Si Nanopyramids for Excellent Light Trapping in Ultrathin Solar Cells , 2016 .

[18]  T. Yoon,et al.  Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores , 2009 .

[19]  A Self-Powered Fast-Response Ultraviolet Detector of p–n Homojunction Assembled from Two ZnO-Based Nanowires , 2016, Nano-micro letters.

[20]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[21]  Paul W. Leu,et al.  Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping. , 2014, Optics letters.

[22]  Ningfeng Huang,et al.  Broadband absorption of semiconductor nanowire arrays for photovoltaic applications , 2012 .

[23]  Rolf Brendel,et al.  19%‐efficient and 43 µm‐thick crystalline Si solar cell from layer transfer using porous silicon , 2012 .

[24]  Long Wen,et al.  Theoretical consideration of III–V nanowire/Si triple-junction solar cells , 2012, Nanotechnology.

[25]  D. He,et al.  Facile embedding of SiO2 nanoparticles in organic solar cells for performance improvement , 2017 .

[26]  Rusli,et al.  Thin Film Silicon Nanowire/PEDOT:PSS Hybrid Solar Cells with Surface Treatment , 2016, Nanoscale Research Letters.

[27]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[28]  D. He,et al.  Nanostructural optimization of silicon/PEDOT:PSS hybrid solar cells for performance improvement , 2017 .

[29]  Zach M. Beiley,et al.  Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .

[30]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[31]  E. Dunlop,et al.  Potential of solar electricity generation in the European Union member states and candidate countries , 2007 .

[32]  Light management: porous 1-dimensional nanocolumnar structures as effective photonic crystals for perovskite solar cells , 2016 .

[33]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[34]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[35]  Pingqi Gao,et al.  Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays. , 2017, Optics express.

[36]  Paul W. Leu,et al.  Enhanced absorption in silicon nanocone arrays for photovoltaics , 2012, Nanotechnology.

[37]  Hongyu Yu,et al.  Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications , 2010, Nanoscale research letters.

[38]  G. Garcia‐Belmonte,et al.  Recent Advances to Understand Morphology Stability of Organic Photovoltaics , 2016, Nano-Micro Letters.

[39]  R. Margolis,et al.  A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs , 2013 .

[40]  Zixu Sun,et al.  Efficient light trapping in low aspect-ratio honeycomb nanobowl surface texturing for crystalline silicon solar cell applications , 2013 .

[41]  N. Singh,et al.  Si Nanopillar Array Surface-Textured Thin-Film Solar Cell With Radial p-n Junction , 2011, IEEE Electron Device Letters.

[42]  D. Lei,et al.  Omnidirectional absorption enhancement of symmetry-broken crescent-deformed single-nanowire photovoltaic cells , 2015 .

[43]  Kui‐Qing Peng,et al.  Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching , 2008 .

[44]  M. Anantram,et al.  Core-shell silicon nanowire solar cells , 2013, Scientific Reports.

[45]  J. Svensson,et al.  Increased absorption in InAsSb nanowire clusters through coupled optical modes , 2017 .

[46]  Chennupati Jagadish,et al.  Influence of Electrical Design on Core–Shell GaAs Nanowire Array Solar Cells , 2015, IEEE Journal of Photovoltaics.

[47]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[48]  Dim-Lee Kwong,et al.  Design guidelines of periodic Si nanowire arrays for solar cell application , 2009 .

[49]  Hybrid Si nanocones/PEDOT:PSS solar cell , 2015, Nanoscale Research Letters.

[50]  Xiaomin Ren,et al.  Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells , 2015, Nanoscale Research Letters.

[51]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[52]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[53]  Jurriaan Huskens,et al.  Effects of Pillar Height and Junction Depth on the Performance of Radially Doped Silicon Pillar Arrays for Solar Energy Applications , 2016 .

[54]  D. Kwong,et al.  Novel silicon nanohemisphere-array solar cells with enhanced performance. , 2011, Small.

[55]  W. Raja,et al.  Perovskite Nanopillar Array Based Tandem Solar Cell , 2017 .

[56]  Paul W. Leu,et al.  Tunable and selective resonant absorption in vertical nanowires. , 2012, Optics letters.

[57]  Shui-Tong Lee,et al.  Nanostructured Si/Organic Heterojunction Solar Cells with High Open‐Circuit Voltage via Improving Junction Quality , 2016 .

[58]  Zhiyong Fan,et al.  High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility , 2016 .

[59]  M. Zanuccoli,et al.  Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells. , 2014, Optics express.

[60]  Junshuai Li,et al.  Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics , 2012, Nanotechnology.

[61]  Zhiyong Fan,et al.  Ordered arrays of dual-diameter nanopillars for maximized optical absorption. , 2010, Nano letters.

[62]  Hongyu Yu,et al.  Low aspect-ratio hemispherical nanopit surface texturing for enhancing light absorption in crystalline Si thin film-based solar cells , 2011 .

[63]  F. Rawson,et al.  New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. , 2014, Analytical chemistry.

[64]  Guo-Qiang Lo,et al.  Si nanocone array optimization on crystalline Si thin films for solar energy harvesting , 2010 .

[65]  Guo-Qiang Lo,et al.  Efficient tandem organic solar cells with an Al/MoO3 intermediate layer , 2008 .

[66]  A. S. Nair,et al.  On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. , 2014, Physical chemistry chemical physics : PCCP.