An Interactive Proof of Termination for a Concurrent $\lambda$-calculus with References and Explicit Substitutions

In this paper we introduce a typed, concurrent $\lambda$-calculus with references featuring explicit substitutions for variables and references. Alongside usual safety properties, we recover strong normalization. The proof is based on a reducibility technique and an original interactive property reminiscent of the Game Semantics approach.

[1]  Pierre Lescanne,et al.  Explicit Substitutions with de Bruijn's Levels , 1995, RTA.

[2]  P. J. Landin The Mechanical Evaluation of Expressions , 1964, Comput. J..

[3]  Beniamino Accattoli,et al.  Proof nets and the call-by-value λ-calculus , 2012, Theor. Comput. Sci..

[4]  Jean-Jacques Lévy,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996, JACM.

[5]  Martin Odersky,et al.  Call-by-name, call-by-value, call-by-need and the linear lambda calculus , 1995, MFPS.

[6]  Paolo Tranquilli Translating types and effects with state monads and linear logic , 2010 .

[7]  Delia Kesner,et al.  A nonstandard standardization theorem , 2014, POPL.

[8]  Francesco Quaglia,et al.  PELCR: Parallel environment for optimal lambda-calculus reduction , 2007, TOCL.

[9]  Martín Abadi,et al.  Explicit substitutions , 1989, POPL '90.

[10]  Roberto M. Amadio,et al.  On Stratified Regions , 2009, APLAS.

[11]  Vincent Danos,et al.  Reversible, Irreversible and Optimal λ-machines: Extended abstract , 1996 .

[12]  Andrew M. Pitts,et al.  A new approach to abstract syntax involving binders , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[13]  Ugo de'Liguoro,et al.  Non Deterministic Extensions of Untyped Lambda-Calculus , 1995, Inf. Comput..

[14]  Kristoffer Høgsbro Rose,et al.  Explicit Cyclic Substitutions , 1992, CTRS.

[15]  Gérard Boudol,et al.  Typing termination in a higher-order concurrent imperative language , 2007, Inf. Comput..

[16]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[17]  Delia Kesner,et al.  The structural λ-calculus , 2010 .

[18]  Ian Mackie,et al.  Efficient Reductions with Director Strings , 2003, RTA.

[19]  Thomas Ehrhard,et al.  Interpreting a finitary pi-calculus in differential interaction nets , 2007, Inf. Comput..

[20]  Thomas Ehrhard,et al.  Differential Interaction Nets , 2005, WoLLIC.

[21]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[22]  Antoine Madet Complexité Implicite de Lambda-Calculs Concurrents , 2012 .

[23]  Delia Kesner,et al.  A Theory of Explicit Substitutions with Safe and Full Composition , 2009, Log. Methods Comput. Sci..