Insight on the molecular envelope of lipid-bound apolipoprotein E from electron paramagnetic resonance spectroscopy.

[1]  K. Scearce-Levie,et al.  Apolipoprotein E4 domain interaction: Synaptic and cognitive deficits in mice , 2008, Alzheimer's & Dementia.

[2]  P. Fajer,et al.  Mapping electron paramagnetic resonance spin label conformations by the simulated scaling method. , 2007, Journal of the American Chemical Society.

[3]  Duilio Cascio,et al.  Structural determinants of nitroxide motion in spin‐labeled proteins: Tertiary contact and solvent‐inaccessible sites in helix G of T4 lysozyme , 2007, Protein science : a publication of the Protein Society.

[4]  K. Weisgraber,et al.  Apolipoprotein E•dipalmitoylphosphatidylcholine particles are ellipsoidal in solutions⃞ Published, JLR Papers in Press, February 17, 2007. , 2007, Journal of Lipid Research.

[5]  J. Voss,et al.  Electron Paramagnetic Resonance Spectroscopy of Site-directed Spin Labels Reveals the Structural Heterogeneity in the N-terminal Domain of ApoA-I in Solution* , 2007, Journal of Biological Chemistry.

[6]  K. Weisgraber,et al.  Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. , 2006, Journal of molecular biology.

[7]  K. Weisgraber,et al.  Apolipoprotein E structure: insights into function. , 2006, Trends in biochemical sciences.

[8]  J. Voss,et al.  Apolipoprotein A-I Assumes a “Looped Belt” Conformation on Reconstituted High Density Lipoprotein* , 2006, Journal of Biological Chemistry.

[9]  K. Weisgraber,et al.  Model of Biologically Active Apolipoprotein E Bound to Dipalmitoylphosphatidylcholine* , 2006, Journal of Biological Chemistry.

[10]  K. Weisgraber,et al.  Effect of Domain Interaction on Apolipoprotein E Levels in Mouse Brain , 2005, The Journal of Neuroscience.

[11]  K. Weisgraber,et al.  Crystallization and preliminary X-ray diffraction analysis of apolipoprotein E-containing lipoprotein particles. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[12]  K. Weisgraber,et al.  Modulation of Apolipoprotein E Structure by Domain Interaction , 2005, Journal of Biological Chemistry.

[13]  M. Gelb,et al.  A ruler for determining the position of proteins in membranes. , 2005, Journal of the American Chemical Society.

[14]  J. Voss,et al.  The C-terminal domain of apolipoprotein A-I contains a lipid-sensitive conformational trigger , 2003, Nature Structural Biology.

[15]  V. Narayanaswami,et al.  Lipid association-induced N- and C-terminal domain reorganization in human apolipoprotein E3. , 2001, The Journal of biological chemistry.

[16]  Robert V Farese,et al.  Introduction of human apolipoprotein E4 “domain interaction” into mouse apolipoprotein E , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  V. Narayanaswami,et al.  The Lipid-associated Conformation of the Low Density Lipoprotein Receptor Binding Domain of Human Apolipoprotein E* , 2000, The Journal of Biological Chemistry.

[18]  K. Weisgraber,et al.  Conformational Reorganization of the Four-helix Bundle of Human Apolipoprotein E in Binding to Phospholipid* , 2000, The Journal of Biological Chemistry.

[19]  K. J. Oh,et al.  Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. , 2000, Biochemistry.

[20]  V. Narayanaswami,et al.  Molecular basis of exchangeable apolipoprotein function. , 2000, Biochimica et biophysica acta.

[21]  Anthony E. Klon,et al.  A Detailed Molecular Belt Model for Apolipoprotein A-I in Discoidal High Density Lipoprotein* , 1999, The Journal of Biological Chemistry.

[22]  K. Weisgraber,et al.  Functional characterization of apolipoprotein E isoforms overexpressed in Escherichia coli. , 1999, Protein expression and purification.

[23]  R. Mahley,et al.  Apolipoprotein E: from atherosclerosis to Alzheimer's disease and beyond. , 1999, Current opinion in lipidology.

[24]  K. J. Oh,et al.  Conformation of T4 lysozyme in solution. Hinge-bending motion and the substrate-induced conformational transition studied by site-directed spin labeling. , 1997, Biochemistry.

[25]  K. Weisgraber,et al.  Human Apolipoprotein E4 Domain Interaction , 1996, The Journal of Biological Chemistry.

[26]  D. Cafiso,et al.  Membrane structure of protein kinase C and calmodulin binding domain of myristoylated alanine rich C kinase substrate determined by site-directed spin labeling. , 1996, Biochemistry.

[27]  D. Agard,et al.  Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. , 1994 .

[28]  R. Mahley,et al.  Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. , 1994, Science.

[29]  J. Haines,et al.  Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. , 1993, Science.

[30]  A. D. Roses,et al.  Association of apolipoprotein E allele €4 with late-onset familial and sporadic Alzheimer’s disease , 2006 .

[31]  M. Pericak-Vance,et al.  Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D A Agard,et al.  Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. , 1991, Science.

[33]  R. Mahley,et al.  Apolipoprotein C-I modulates the interaction of apolipoprotein E with beta-migrating very low density lipoproteins (beta-VLDL) and inhibits binding of beta-VLDL to low density lipoprotein receptor-related protein. , 1990, The Journal of biological chemistry.

[34]  K. Weisgraber,et al.  Human apolipoprotein E3 in aqueous solution. I. Evidence for two structural domains. , 1988, The Journal of biological chemistry.

[35]  K. Weisgraber,et al.  Human apolipoprotein E3 in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. , 1988, The Journal of biological chemistry.

[36]  R. Mahley,et al.  Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. , 1988, Science.

[37]  R. Mahley,et al.  Obligatory role of cholesterol and apolipoprotein E in the formation of large cholesterol-enriched and receptor-active high density lipoproteins. , 1985, Journal of Biological Chemistry.

[38]  R. Mahley,et al.  Formation of cholesterol- and apoprotein E-enriched high density lipoproteins in vitro. , 1983, The Journal of biological chemistry.

[39]  W. A. Bradley,et al.  Apolipoprotein E mediates uptake of Sf 100-400 hypertriglyceridemic very low density lipoproteins by the low density lipoprotein receptor pathway in normal human fibroblasts. , 1983, The Journal of biological chemistry.

[40]  A. Jonas,et al.  Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions. , 1982, The Journal of biological chemistry.

[41]  R. Mahley,et al.  Binding of arginine-rich (E) apoprotein after recombination with phospholipid vesicles to the low density lipoprotein receptors of fibroblasts. , 1979, The Journal of biological chemistry.

[42]  G. Semenuk,et al.  The plasma lecithin: cholesterol acyltransferase reaction in normal, hypophysectomized and thyroidectomized rats and in hamsters. , 1969, Life sciences.

[43]  R. Mahley,et al.  Lipoproteins, neurobiology, and Alzheimer's disease: structure and function of apolipoprotein E , 1994 .

[44]  K. Weisgraber Apolipoprotein E: structure-function relationships. , 1994, Advances in protein chemistry.