Incorporating monotonicity and concavity conditions in flexible functional forms

Empirical economists using flexible functional forms often face the disturbing choice of drawing inferences from an approximation violating properties dictated by theory or imposing global restrictions that greatly restrict the flexibility of the functional form. Focusing on the cost function, this paper presents an alternative approach which imposes monotonicity and concavity properties only over the set of prices where inferences will be drawn. An application investigating elasticities for Berndt-Wood data set using the translog, generalized Leontief, and symmetric generalized McFadden flexible functional forms illustrates the technique. Copyright 1996 by John Wiley & Sons, Ltd.

[1]  Siddhartha Chib,et al.  Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models☆ , 1995 .

[2]  W. Diewert,et al.  Flexible Functional Forms and Global Curvature Conditions , 1989 .

[3]  Gene H. Golub,et al.  Imposing curvature restrictions on flexible functional forms , 1984 .

[4]  Siddhartha Chib,et al.  Bayes regression with autoregressive errors : A Gibbs sampling approach , 1993 .

[5]  M. Steel,et al.  Bayesian Efficiency Analysis With a Flexible Form: The AIM Cost Function , 1994 .

[6]  David F. Percy,et al.  Prediction for Seemingly Unrelated Regressions , 1992 .

[7]  J. Geweke,et al.  Alternative computational approaches to inference in the multinomial probit model , 1994 .

[8]  William A. Barnett,et al.  The three-dimensional global properties of the minflex laurent, generalized leontief, and translog flexible functional forms , 1985 .

[9]  M. McElroy Additive General Error Models for Production, Cost, and Derived Demand or Share Systems , 1987, Journal of Political Economy.

[10]  E. Berndt,et al.  Technology, Prices, and the Derived Demand for Energy , 1975 .

[11]  D. Jorgenson,et al.  TRANSCENDENTAL LOGARITHMIC PRODUCTION FRONTIERS , 1973 .

[12]  William A. Barnett,et al.  The Global Properties of the Miniflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms , 1985 .

[13]  Walter Diewert,et al.  An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function , 1971, Journal of Political Economy.

[14]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[15]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[16]  D. Terrell Flexibility and regularity properties of the asymptotically ideal production model , 1995 .

[17]  Dale W. Jorgenson,et al.  Relative Prices and Technical Change , 1983 .

[18]  S. Chib,et al.  Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts , 1993 .

[19]  J. Geweke,et al.  Antithetic acceleration of Monte Carlo integration in Bayesian inference , 1988 .

[20]  Ernst R. Berndt,et al.  Parametric Productivity Measurement and Choice Among Flexible Functional Forms , 1979, Journal of Political Economy.

[21]  L. R. Christensen,et al.  Global Properties of Flexible Functional Forms , 1980 .