Optimizing the impact of data augmentation for low-resource grammatical error correction

[1]  Lin Li,et al.  Heterogeneous models ensemble for Chinese grammatical error correction , 2023, International Conference on Artificial Intelligence, Virtual Reality, and Visualization.

[2]  Taynan Maier Ferreira,et al.  Data augmentation techniques in natural language processing , 2022, Appl. Soft Comput..

[3]  Chao Wu,et al.  Automatic Correction of Indonesian Grammatical Errors Based on Transformer , 2022, Applied Sciences.

[4]  Siti Zulaikha Mohd Jamaludin,et al.  Novel logic mining incorporating log linear approach , 2022, J. King Saud Univ. Comput. Inf. Sci..

[5]  Alejandro F Frangi,et al.  Physics-Informed Deep Learning for Musculoskeletal Modeling: Predicting Muscle Forces and Joint Kinematics From Surface EMG , 2022, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  Dominik Pajak,et al.  Multilingual fine-tuning for Grammatical Error Correction , 2022, Expert Syst. Appl..

[7]  Artem N. Chernodub,et al.  Ensembling and Knowledge Distilling of Large Sequence Taggers for Grammatical Error Correction , 2022, ACL.

[8]  Jinsong Su,et al.  Type-Driven Multi-Turn Corrections for Grammatical Error Correction , 2022, FINDINGS.

[9]  Siti Zulaikha Mohd Jamaludin,et al.  Supervised Learning Perspective in Logic Mining , 2022, Mathematics.

[10]  Xin Sun,et al.  A Unified Strategy for Multilingual Grammatical Error Correction with Pre-trained Cross-Lingual Language Model , 2022, IJCAI.

[11]  Tao Qian,et al.  Automatic Arabic Grammatical Error Correction based on Expectation-Maximization routing and target-bidirectional agreement , 2022, Knowl. Based Syst..

[12]  Borislav M. Kozlovskii,et al.  Fine-Tuning Transformers: Vocabulary Transfer , 2021, Artif. Intell..

[13]  Gheith A. Abandah,et al.  Correcting Arabic Soft Spelling Mistakes using BiLSTM-based Machine Learning , 2021, International Journal of Advanced Computer Science and Applications.

[14]  Marcin Junczys-Dowmunt,et al.  The Curious Case of Hallucinations in Neural Machine Translation , 2021, NAACL.

[15]  Tao Qian,et al.  Synthetic data with neural machine translation for automatic correction in arabic grammar , 2020 .

[16]  Xiaojun Wan,et al.  Improving Grammatical Error Correction with Data Augmentation by Editing Latent Representation , 2020, COLING.

[17]  Kingsley Nketia Acheampong,et al.  Toward perfect neural cascading architecture for grammatical error correction , 2020, Appl. Intell..

[18]  Rico Sennrich,et al.  Analyzing the Source and Target Contributions to Predictions in Neural Machine Translation , 2020, ACL.

[19]  Hend Suliman Al-Khalifa,et al.  Error Detection for Arabic Text Using Neural Sequence Labeling , 2020, Applied Sciences.

[20]  Wendong Xiao,et al.  Non-iterative and Fast Deep Learning: Multilayer Extreme Learning Machines , 2020, J. Frankl. Inst..

[21]  Jun Suzuki,et al.  Massive Exploration of Pseudo Data for Grammatical Error Correction , 2020, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[22]  Abderrahim Tragha,et al.  An innovative approach to autocorrecting grammatical errors in Arabic texts , 2019, J. King Saud Univ. Comput. Inf. Sci..

[23]  Eneko Agirre,et al.  Unsupervised Statistical Machine Translation , 2018, EMNLP.

[24]  Dale Schuurmans,et al.  Reward Augmented Maximum Likelihood for Neural Structured Prediction , 2016, NIPS.

[25]  Eric Atwell,et al.  Arabic Learner Corpus (ALC) v2 : A New Written and Spoken Corpus of Arabic Learners , 2014 .

[26]  H. Ng,et al.  Frustratingly Easy System Combination for Grammatical Error Correction , 2022, NAACL.