A Cyclic Solution for an Infinite Class of Hamilton–Waterloo Problems

The main result of this paper is the explicit construction, for any positive integer n, of a cyclic two-factorization of $$K_{50n+5}$$K50n+5 with $$20n+2$$20n+2 two-factors consisting of five $$(10n+1)$$(10n+1)-cycles and each of the remaining two-factors consisting of all pentagons. Then, applying suitable composition constructions, we obtain a few other two-factorizations also having two-factors of two distinct types.

[1]  Marco Buratti,et al.  1-Rotational k-Factorizations of the Complete Graph and New Solutions to the Oberwolfach Problem , 2008 .

[2]  Victor Scharaschkin,et al.  Complete solutions to the Oberwolfach problem for an infinite set of orders , 2009, J. Comb. Theory, Ser. B.

[3]  Don R. Lick,et al.  On λ-Fold Equipartite Oberwolfach Problem with Uniform Table Sizes , 2003 .

[4]  Peter Adams,et al.  Two-factorisations of complete graphs of orders fifteen and seventeen , 2006, Australas. J Comb..

[5]  C. Colbourn,et al.  Mutually orthogonal latin squares (MOLS) , 2006 .

[6]  Peter Adams,et al.  On the Hamilton-Waterloo Problem , 2002, Graphs Comb..

[7]  Gloria Rinaldi,et al.  Graph Products and New Solutions to Oberwolfach Problems , 2011, Electron. J. Comb..

[8]  Melissa S. Keranen,et al.  The Hamilton-Waterloo Problem with 4-Cycles and a Single Factor of n-Cycles , 2013, Graphs Comb..

[9]  Marco Buratti,et al.  Some constructions for cyclic perfect cycle systems , 2005, Discret. Math..

[10]  Charles J. Colbourn,et al.  Resolvable and Near Resolvable Designs , 1996 .

[11]  Joy Morris,et al.  Cyclic hamiltonian cycle systems of the complete graph minus a 1-factor , 2008, Discret. Math..

[12]  W. L. Piotrowski,et al.  The solution of the bipartite analogue of the Oberwolfach problem , 1991, Discret. Math..

[13]  Reiji Tsuruno,et al.  P3-factorization of complete multipartite graphs , 1989, Graphs Comb..

[14]  Jiuqiang Liu,et al.  The equipartite Oberwolfach problem with uniform tables , 2003, J. Comb. Theory, Ser. A.

[15]  Frantisek Franek,et al.  Two-factorizations of small complete graphs , 2000 .

[16]  Peter Adams,et al.  3,5‐Cycle decompositions , 1998 .

[17]  Marco Buratti,et al.  On sharply vertex transitive 2-factorizations of the complete graph , 2005, J. Comb. Theory, Ser. A.

[18]  Brett Stevens,et al.  The Hamilton–Waterloo problem for cycle sizes 3 and 4 , 2009 .

[19]  William Pettersson,et al.  Bipartite 2-Factorizations of Complete Multipartite Graphs , 2015, J. Graph Theory.

[20]  D. West Introduction to Graph Theory , 1995 .

[21]  Darryn E. Bryant,et al.  On bipartite 2‐factorizations of kn − I and the Oberwolfach problem , 2011, J. Graph Theory.

[22]  Lars Døvling Andersen Factorizations of Graphs , 2006 .

[23]  Alexander Rosa,et al.  The Hamilton-Waterloo problem: the case of Hamilton cycles and triangle-factors , 2004, Discret. Math..

[24]  Alan C. H. Ling,et al.  The Hamilton—Waterloo problem: The case of triangle‐factors and one Hamilton cycle , 2009 .

[25]  Tommaso Traetta,et al.  A complete solution to the two-table Oberwolfach problems , 2013, J. Comb. Theory, Ser. A.

[26]  Marco Buratti,et al.  Cyclic Hamiltonian cycle systems of the complete graph , 2004, Discret. Math..