Les systèmes de classeurs

Learning Classifier Systems (LCSs) are rule-based systems that automatically build their ruleset. Initially, LCSs were dedicated to the modelling of the emergence of cognitive abilities thanks to adaptive mechanisms, particularly evolutionary processes. After a renewal of the field more focused on learning, LCSs have been reconsidered as sequential decision problem solving systems endowed with a generalization property. Finally, much more recently, LCSs have proved very efficient at solving classification tasks, which boosted the field. In this context, the aim of this contribution is to present the state-of-the-art of LCSs, insisting on recent developments, and focusing more on the sequential decision domain than on automatic classification. MOTS-CLES : systemes de classeurs, apprentissage par renforcement, generalisation.

[1]  Martin V. Butz,et al.  Toward a theory of generalization and learning in XCS , 2004, IEEE Transactions on Evolutionary Computation.

[2]  Daniele Loiacono,et al.  Classifier prediction based on tile coding , 2006, GECCO '06.

[3]  Gabriel Robert MHiCS, une architecture de sélection de l'action motivationnelle et hiérarchique à systèmes de classeurs pour personnages non joueurs adaptatifs , 2005 .

[4]  C. Sanza Evolution d'entités virtuelles coopératives par système de classifieurs , 2001 .

[5]  J. F. Herbart Psychologie als Wissenschaft : neu gegründet auf Erfahrung, Metaphysik und Mathematik , 1824 .

[6]  Stewart W. Wilson,et al.  Learning Classifier Systems, From Foundations to Applications , 2000 .

[7]  Craig Boutilier,et al.  Exploiting Structure in Policy Construction , 1995, IJCAI.

[8]  D. Cliff From animals to animats , 1994, Nature.

[9]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[10]  Martin V. Butz,et al.  An Algorithmic Description of ACS2 , 2001, International Workshop on Learning Classifier Systems.

[11]  Martin V. Butz,et al.  Automated Global Structure Extraction for Effective Local Building Block Processing in XCS , 2006, Evolutionary Computation.

[12]  Larry Bull,et al.  On using ZCS in a Simulated Continuous Double-Auction Market , 1999, GECCO.

[13]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[14]  D.E. Goldberg,et al.  Classifier Systems and Genetic Algorithms , 1989, Artif. Intell..

[15]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[16]  Olivier Sigaud,et al.  Improving MACS Thanks to a Comparison with 2TBNs , 2004, GECCO.

[17]  Xavier Llorà,et al.  Coevolving Different Knowledge Representations With Fine-grained Parallel Learning Classifier Systems , 2002, GECCO.

[18]  Martin V. Butz,et al.  Generalized State Values in an Anticipatory Learning Classifier System , 2003, ABiALS.

[19]  Stewart W. Wilson Function approximation with a classifier system , 2001 .

[20]  Stewart W. Wilson Knowledge Growth in an Artificial Animal , 1985, ICGA.

[21]  Olivier Sigaud,et al.  Learning the structure of Factored Markov Decision Processes in reinforcement learning problems , 2006, ICML.

[22]  Martin V. Butz,et al.  Gradient descent methods in learning classifier systems: improving XCS performance in multistep problems , 2005, IEEE Transactions on Evolutionary Computation.

[23]  John H. Holland,et al.  Cognitive systems based on adaptive algorithms , 1977, SGAR.

[24]  Craig Boutilier,et al.  Stochastic dynamic programming with factored representations , 2000, Artif. Intell..

[25]  F. W. Irwin Purposive Behavior in Animals and Men , 1932, The Psychological Clinic.

[26]  S. Smith,et al.  A Learning System Based on Genetic Algorithms , 1980 .

[27]  Lashon B. Booker,et al.  Do We Really Need to Estimate Rule Utilities in Classifier Systems? , 1999, Learning Classifier Systems.

[28]  Marco Dorigo,et al.  A comparison of Q-learning and classifier systems , 1994 .

[29]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[30]  David E. Goldberg,et al.  A Critical Review of Classifier Systems , 1989, ICGA.

[31]  Pier Luca Lanzi Adding memory to XCS , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[32]  Luca Lanzi Pier,et al.  Extending the Representation of Classifier Conditions Part II: From Messy Coding to S-Expressions , 1999 .

[33]  Martin V. Butz,et al.  Tournament Selection: Stable Fitness Pressure in XCS , 2003, GECCO.

[34]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[35]  J. van Leeuwen,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[36]  M. Puterman,et al.  Modified Policy Iteration Algorithms for Discounted Markov Decision Problems , 1978 .

[37]  Stewart W. Wilson Classifier Systems for Continuous Payoff Environments , 2004, GECCO.

[38]  Martin V. Butz,et al.  An algorithmic description of XCS , 2000, Soft Comput..

[39]  Richard S. Sutton,et al.  Planning by Incremental Dynamic Programming , 1991, ML.

[40]  Stewart W. Wilson Get Real! XCS with Continuous-Valued Inputs , 1999, Learning Classifier Systems.

[41]  Tim Kovacs Learning classifier systems resources , 2002, Soft Comput..

[42]  Larry Bull,et al.  Design of a Traffic Junction Controller Using Classifier Systems and Fuzzy Logic , 1999, Fuzzy Days.

[43]  Rick L. Riolo,et al.  Lookahead planning and latent learning in a classifier system , 1991 .

[44]  Tim Kovacs Strength or accuracy: credit assignment in learning classifier systems , 2003 .

[45]  Richard S. Sutton,et al.  Generalization in ReinforcementLearning : Successful Examples UsingSparse Coarse , 1996 .

[46]  Riccardo Poli,et al.  Schema Theory for Genetic Programming with One-Point Crossover and Point Mutation , 1997, Evolutionary Computation.

[47]  Larry Bull,et al.  On ZCS in Multi-agent Environments , 1998, PPSN.

[48]  Stewart W. Wilson ZCS: A Zeroth Level Classifier System , 1994, Evolutionary Computation.

[49]  Larry Bull,et al.  A Corporate Classifier System , 1998, PPSN.

[50]  Jan Drugowitsch,et al.  Towards convergence of learning classifier systems value iteration , 2006 .

[51]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[52]  Stewart W. Wilson Classifier Fitness Based on Accuracy , 1995, Evolutionary Computation.

[53]  Pier Luca Lanzi,et al.  Learning classifier systems from a reinforcement learning perspective , 2002, Soft Comput..

[54]  Christopher Stone,et al.  Towards Learning Classifier Systems for Continuous-Valued Online Environments , 2003, GECCO.

[55]  Jaume Bacardit,et al.  Evolving Multiple Discretizations with Adaptive Intervals for a Pittsburgh Rule-Based Learning Classifier System , 2003, GECCO.

[56]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[57]  Larry Bull,et al.  Two simple learning classifier systems , 2005 .

[58]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[59]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[60]  Larry Bull,et al.  A Genetic Programming-based Classifier System , 1999, GECCO.

[61]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[62]  Larry Bull,et al.  ZCS Redux , 2002, Evolutionary Computation.

[63]  Larry Bull,et al.  A Simple Payoff-Based Learning Classifier System , 2004, PPSN.

[64]  J. P. Seward An experimental analysis of latent learning. , 1949, Journal of experimental psychology.

[65]  Terence C. Fogarty,et al.  Co-evolutionary classifier systems for multi-agent simulation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[66]  Martin V. Butz,et al.  Introducing a Genetic Generalization Pressure to the Anticipatory Classifier System - Part 1: Theoretical approach , 2000, GECCO.

[67]  Pier Luca Lanzi,et al.  A Roadmap to the Last Decade of Learning Classifier System Research , 1999, Learning Classifier Systems.

[68]  Christos Dimitrakakis,et al.  Generalization in Reinforcement Learning , 2009 .

[69]  Olivier Sigaud,et al.  Designing Efficient Exploration with MACS: Modules and Function Approximation , 2003, GECCO.

[70]  Y J Cao,et al.  AN EVOLUTIONARY INTELLIGENT AGENTS APPROACH TO TRAFFIC SIGNALS CONTROL , 2001 .

[71]  Tim Kovacs,et al.  Advances in Learning Classifier Systems , 2001, Lecture Notes in Computer Science.