Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2

Angiopoietin-2 (Ang2) appears to be a naturally occurring antagonist of the endothelial receptor tyrosine kinase Tie2, an important regulator of vascular stability. Destabilization of the endothelium by Ang2 is believed to potentiate the actions of proangiogenic growth factors. To investigate the specific role of Ang2 in the adult vasculature, we generated a nuclease-resistant RNA aptamer that binds and inhibits Ang2 but not the related Tie2 agonist, angiopoietin-1. Local delivery of this aptamer but not a partially scrambled mutant aptamer inhibited basic fibroblast growth factor-mediated neovascularization in the rat corneal micropocket angiogenesis assay. These in vivo data directly demonstrate that a specific inhibitor of Ang2 can act as an antiangiogenic agent.

[1]  P. Carmeliet,et al.  Heterogeneous vascular dependence of tumor cell populations. , 2001, The American journal of pathology.

[2]  Douglas Hanahan,et al.  Signaling Vascular Morphogenesis and Maintenance , 1997, Science.

[3]  Thomas N. Sato,et al.  Increased vascularization in mice overexpressing angiopoietin-1. , 1998, Science.

[4]  K. Alitalo,et al.  Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. , 2001, Cardiovascular research.

[5]  A. Varki,et al.  DNA aptamers block L-selectin function in vivo. Inhibition of human lymphocyte trafficking in SCID mice. , 1996, The Journal of clinical investigation.

[6]  Thomas N. Sato,et al.  Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. , 1997, Science.

[7]  R. D'Amato,et al.  Genetic heterogeneity of angiogenesis in mice , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[8]  B. Hicke,et al.  Escort aptamers: a delivery service for diagnosis and therapy. , 2000, The Journal of clinical investigation.

[9]  William Lee,et al.  Angiopoietin-1 and -2 Coiled Coil Domains Mediate Distinct Homo-oligomerization Patterns, but Fibrinogen-like Domains Mediate Ligand Activity* , 1999, The Journal of Biological Chemistry.

[10]  T. Lohman,et al.  A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Thomas N. Sato,et al.  Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. , 1999, Science.

[12]  M. Makuuchi,et al.  Biologic significance of angiopoietin-2 expression in human hepatocellular carcinoma. , 1999, The Journal of clinical investigation.

[13]  L. Ellis,et al.  Differential expression of angiopoietin‐1 and angiopoietin‐2 in colon carcinoma , 2001, Cancer.

[14]  F. Eckstein,et al.  Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. , 1991, Science.

[15]  S. Ringquist,et al.  Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. , 2000, Antisense & nucleic acid drug development.

[16]  Daniel B. Rifkin,et al.  Fibroblast Growth Factor-2 (FGF-2) Induces Vascular Endothelial Growth Factor (VEGF) Expression in the Endothelial Cells of Forming Capillaries: An Autocrine Mechanism Contributing to Angiogenesis , 1998, The Journal of cell biology.

[17]  K. Plate,et al.  Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. , 1998, The American journal of pathology.

[18]  L. Ellis,et al.  The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. , 2001, Cancer research.

[19]  S. McLeskey,et al.  Expression and function of angiopoietin-1 in breast cancer , 2000, British Journal of Cancer.

[20]  C. Heldin,et al.  Intimal Hyperplasia Recurs After Removal of PDGF-AB and -BB Inhibition in the Rat Carotid Artery Injury Model , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[21]  A. DeAnda,et al.  Pilot study of the efficacy of a thrombin inhibitor for use during cardiopulmonary bypass. , 1994, The Annals of thoracic surgery.

[22]  Thomas N. Sato,et al.  Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation , 1995, Nature.

[23]  Lawrence A. Yannuzzi,et al.  PRECLINICAL AND PHASE 1A CLINICAL EVALUATION OF AN ANTI-VEGF PEGYLATED APTAMER (EYE001) FOR THE TREATMENT OF EXUDATIVE AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[24]  N. Janjić,et al.  Identifying consensus patterns and secondary structure in SELEX sequence sets. , 1996, Methods in enzymology.

[25]  Pamela F. Jones,et al.  Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis , 1996, Cell.

[26]  A. Karpeisky,et al.  Chemical Modification of Hammerhead Ribozymes , 1995, The Journal of Biological Chemistry.

[27]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[28]  T. Zhang,et al.  Liposome-anchored vascular endothelial growth factor aptamers. , 1998, Bioconjugate chemistry.

[29]  M. Dewhirst,et al.  The novel tubulin-binding drug BTO-956 inhibits R3230AC mammary carcinoma growth and angiogenesis in Fischer 344 rats. , 2001, Clinical cancer research : an official journal of the American Association for Cancer Research.

[30]  S. Kitano,et al.  Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. , 2001, Cancer research.

[31]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[32]  B. Sullenger,et al.  Generation of species cross-reactive aptamers using "toggle" SELEX. , 2001, Molecular therapy : the journal of the American Society of Gene Therapy.

[33]  N. Glazer,et al.  Angiopoietin-1 protects the adult vasculature against plasma leakage , 2000, Nature Medicine.

[34]  M. Dewhirst,et al.  Antiangiogenic gene therapy targeting the endothelium-specific receptor tyrosine kinase Tie2. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Pamela F. Jones,et al.  Isolation of Angiopoietin-1, a Ligand for the TIE2 Receptor, by Secretion-Trap Expression Cloning , 1996, Cell.

[36]  S. Gill,et al.  Detection and plasma pharmacokinetics of an anti-vascular endothelial growth factor oligonucleotide-aptamer (NX1838) in rhesus monkeys. , 1999, Journal of chromatography. B, Biomedical sciences and applications.

[37]  P. Rao,et al.  Expression of Tie2/Tek in breast tumour vasculature provides a new marker for evaluation of tumour angiogenesis. , 1998, British Journal of Cancer.

[38]  Sheela M. Waugh,et al.  2′-Fluoropyrimidine RNA-based Aptamers to the 165-Amino Acid Form of Vascular Endothelial Growth Factor (VEGF165) , 1998, The Journal of Biological Chemistry.

[39]  M. Dewhirst,et al.  Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. , 1997, Circulation research.

[40]  J. Isner,et al.  Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. , 1998, Circulation research.

[41]  Ji-Hye Kim,et al.  Angiopoietin-2 at high concentration can enhance endothelial cell survival through the phosphatidylinositol 3′-kinase/Akt signal transduction pathway , 2000, Oncogene.

[42]  J. Chae,et al.  Coadministration of Angiopoietin-1 and Vascular Endothelial Growth Factor Enhances Collateral Vascularization , 2000, Arteriosclerosis, thrombosis, and vascular biology.

[43]  T. Fitzwater,et al.  A SELEX primer. , 1996, Methods in enzymology.

[44]  G. Garcı́a-Cardeña,et al.  Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. , 1999, Laboratory investigation; a journal of technical methods and pathology.

[45]  M. Dewhirst,et al.  Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. , 1997, The Journal of clinical investigation.

[46]  S. Dooley,et al.  The Effects of Platelet-Derived Growth Factor Antagonism in Experimental Glomerulonephritis Are Independent of the Transforming Growth Factor–β System , 2002 .

[47]  C. Bucana,et al.  Spatial and temporal expression of angiogenic molecules during tumor growth and progression. , 1998, Oncology research.

[48]  G. Yancopoulos,et al.  In Situ Expression of Angiopoietins in Astrocytomas Identifies Angiopoietin-2 as an Early Marker of Tumor Angiogenesis , 1999, Experimental Neurology.

[49]  D. Hanahan,et al.  Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. , 1999, Science.

[50]  G. Yancopoulos,et al.  Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. , 1999, Science.

[51]  M. Gertsenstein,et al.  Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. , 1994, Genes & development.

[52]  N. Bouck,et al.  Assay and purification of naturally occurring inhibitor of angiogenesis. , 1991, Methods in enzymology.

[53]  G. Martiny-Baron,et al.  Two independent mechanisms essential for tumor angiogenesis: inhibition of human melanoma xenograft growth by interfering with either the vascular endothelial growth factor receptor pathway or the Tie-2 pathway. , 1999, Cancer research.

[54]  Richard A. Lang,et al.  Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.