Isoperimetric Problems in Discrete Spaces
暂无分享,去创建一个
[1] L. H. Harper. Optimal Assignments of Numbers to Vertices , 1964 .
[2] John H. Lindsey,et al. Assignment of Numbers to Vertices , 1964 .
[3] G. F. Clements,et al. A sequence of (±1)-determinants with large values , 1965 .
[4] L. H. Harper. Optimal numberings and isoperimetric problems on graphs , 1966 .
[5] Kenneth Steiglitz,et al. Encoding of analog signals for binary symmetric channels , 1966, IEEE Trans. Inf. Theory.
[6] A. J. Bernstein,et al. Maximally Connected Arrays on the n-Cube , 1967 .
[7] B. Lindström,et al. A combinatorial problem in the $k$-adic number system , 1967 .
[8] Bernt Lindström,et al. The optimal number of faces in cubical complexes , 1971 .
[9] Daniel J. Kleitman,et al. Configurations Maximizing the Number of Pairs of Hamming-Adjacent Lattice Points , 1971 .
[10] G. F. Clements. Sets of lattice points which contain a maximal number of edges , 1971 .
[11] Gyula O. H. Katona,et al. The Hamming-sphere has minimum boundary , 1975 .
[12] Sergiu Hart,et al. A note on the edges of the n-cube , 1976, Discret. Math..
[13] Rudolf Ahlswede,et al. Contributions to the geometry of hamming spaces , 1977, Discret. Math..
[14] Da-Lun Wang,et al. Discrete Isoperimetric Problems , 1977 .
[15] Da-Lun Wang,et al. Extremal Configurations on a Discrete Torus and a Generalization of the Generalized Macaulay Theorem , 1977 .
[16] R. Osserman. The isoperimetric inequality , 1978 .
[17] D. J. Kleitman. Surveys in Combinatorics: Extremal hypergraph problems , 1979 .
[18] Zoltán Füredi,et al. A short proof for a theorem of Harper about Hamming-spheres , 1981, Discret. Math..
[19] Rudolf Ahlswede,et al. Note on an extremal problem arising for unreliable networks in parallel computing , 1983, Discret. Math..
[20] Victor K.-W. Wei,et al. Odd and even hamming spheres also have minimum boundary , 1984, Discret. Math..
[21] Peter Frankl,et al. A new short proof for the Kruskal-Katona theorem , 1984, Discret. Math..
[22] ON THE DISTRIBUTION OF THE NUMBER OF INTERIOR POINTS IN SUBSETS OF THE n-DIMENSIONAL UNIT CUBE , 1984 .
[23] H. J. Tiersma. A note on Hamming spheres , 1985, Discret. Math..
[24] Victor K.-W. Wei,et al. Addendum to "odd and even hamming spheres also have minimum boundary" , 1986, Discret. Math..
[25] Zoltán Füredi,et al. Families of finite sets with minimum shadows , 1986, Comb..
[26] Daniel J. Kleitman. On a problem of Yuzvinsky on separating the n-cube , 1986, Discret. Math..
[27] Sergei L. Bezrukov. ON THE CONSTRUCTION OF SOLUTIONS OF A DISCRETE ISOPERIMETRIC PROBLEM IN HAMMING SPACE , 1989 .
[28] Peter Frankl. A lower bound on the size of a complex generated by an antichain , 1989, Discret. Math..
[29] Béla Bollobás,et al. Isoperimetric Inequalities for Faces of the Cube and the Grid , 1990, Eur. J. Comb..
[30] Béla Bollobás,et al. An Isoperimetric Inequality on the Discrete Torus , 1990, SIAM J. Discret. Math..
[31] Béla Bollobás,et al. Edge-isoperimetric inequalities in the grid , 1991, Comb..
[32] Béla Bollobás,et al. Compressions and isoperimetric inequalities , 1990, J. Comb. Theory, Ser. A.
[33] Béla Bollobás,et al. Isoperimetric inequalities and fractional set systems , 1991, J. Comb. Theory, Ser. A.
[34] Specification of all Solutions of the Discrete Isoperimetric Problem that Have a Critical Cardinality , 2002 .
[35] Extremal Ideals of the Lattice of Multisets , 2002 .