DE L'ALG EBRE DES DE RIEMANN MULTIVARI EES A L'ALG EBRE DES DE HURWITZ MULTIVARI EES

The theory of noncommutative rational power series allows to ex- press as iterated integrals some generating series associated to polylogarithms and polyz^ etas, also called MZV's (multiple zeta values : a generalization of the Riemann function). We introduce the Hurwitz polyz^ etas, as a multivalued generalization of the classical Hurwitz function. They are in fact generating series of the classical polyz^ etas in commuting variables. Based on the shue product of noncommuta- tive rational series, explicit formulae are given for computing the product of these generating series. We dene also another shue product for the Hurwitz polyz^ etas. This structure allows us to produce a new algorithm for computing the coloured polyz^ etas relations, by mean of Dirichlet generating series associated to the periodic sequences of numbers. Concerning the regularization of divergent polyz^ etas, we give explicit syntaxic formulae based on the combinatorics of words. As application we compute the Arakawa-Kaneko integrals in terms of polyz^ etas. R esum e. La th eorie des s eries rationnelles en variables non commutatives permet

[1]  P. Cartier Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds , 1993 .

[2]  Hoang Ngoc Minh Summations of polylogarithms via evaluation transform , 1996 .

[3]  Michel Petitot,et al.  Lyndon words, polylogarithms and the Riemann Zeta function , 2000, Discret. Math..

[4]  David E. Radford,et al.  A natural ring basis for the shuffle algebra and an application to group schemes , 1979 .

[5]  U MichaelE.Hoffman The Algebra of Multiple Harmonic Series , 1997 .

[6]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[7]  D. Zagier Values of Zeta Functions and Their Applications , 1994 .

[8]  D. J. Broadhurst,et al.  Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.

[9]  A. Goncharov,et al.  Multiple polylogarithms, cyclotomy and modular complexes , 2011, 1105.2076.

[10]  Masanobu Kaneko,et al.  Multiple zeta values, poly-Bernoulli numbers, and related zeta functions , 1999, Nagoya Mathematical Journal.

[11]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[12]  V. Arnold The Vassiliev Theory of Discriminants and Knots , 1994 .

[13]  D. J. Broadhurst,et al.  Knots and Numbers in ϕ4 Theory to 7 Loops and Beyond , 1995 .

[14]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[15]  Philippe Flajolet,et al.  Hypergeometrics and the Cost Structure of Quadtrees , 1995, Random Struct. Algorithms.

[16]  Michaël Bigotte Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d'Euler-Zagier colorés , 2000 .