Multi-way Space Partitioning Trees

In this paper, we introduce a new data structure, the multi-way space partitioning (MSP) tree similar in nature to the standard binary space partitioning (BSP) tree. Unlike the super-linear space requirement for BSP trees, we show that for any set of disjoint line segments in the plane there exists a linear-size MSP tree completely partitioning the set. Since our structure is a deviation from the standard BSP tree construction, we also describe an application of our algorithm. We prove that the well-known Painter’s algorithm can be adapted quite easily to use our structure to run in O(n) time. More importantly, the constant factor behind our tree size is extremely small, having size less than 4n.

[1]  Steven K. Feiner,et al.  Fast object-precision shadow generation for area light sources using BSP trees , 1992, I3D '92.

[2]  Bruce F. Naylor,et al.  Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.

[3]  M. D. Berg,et al.  Binary space partitions for sets of cubes , 1994 .

[4]  M. Carter Computer graphics: Principles and practice , 1997 .

[5]  Joseph S. B. Mitchell,et al.  Binary space partitions for axis-parallel segments, rectangles, and hyperrectangles , 2001, SCG '01.

[6]  John Amanatides,et al.  Merging BSP trees yields polyhedral set operations , 1990, SIGGRAPH.

[7]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Fat Objects , 1995, ESA.

[8]  Csaba D. Tóth Binary space partitions for line segments with a limited number of directions , 2002, SODA '02.

[9]  Mark de Berg,et al.  New Results on Binary Space Partitions in the Plane , 1997, Comput. Geom..

[10]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.

[11]  Csaba D. Tóth A Note on Binary Plane Partitions , 2001, SCG '01.

[12]  John M. Airey,et al.  Increasing update rates in the building walkthrough system with automatic model-space subdivision and potentially visible set calculations , 1990 .

[13]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[14]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[15]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[16]  T. M. Murali,et al.  Practical techniques for constructing binary space partitions for orthogonal rectangles , 1997, SCG '97.

[17]  大野 義夫,et al.  Computer Graphics : Principles and Practice, 2nd edition, J.D. Foley, A.van Dam, S.K. Feiner, J.F. Hughes, Addison-Wesley, 1990 , 1991 .

[18]  Carlo H. Séquin,et al.  Visibility preprocessing for interactive walkthroughs , 1991, SIGGRAPH.

[19]  T. M. Murali,et al.  Binary Space Partitions for Fat Rectangles , 2000, SIAM J. Comput..

[20]  Steven K. Feiner,et al.  Near real-time shadow generation using BSP trees , 1989, SIGGRAPH '89.

[21]  Seth Teller,et al.  Visibility Computations in Densely Occluded Polyhedral Environments , 1992 .

[22]  Paul G. Spirakis,et al.  Algorithms — ESA '95 , 1995, Lecture Notes in Computer Science.