Tunable geometric photocurrent in van der Waals heterostructure

Utilizing the spin or valley degree of freedom is a promising approach for realizing more energy-efficient information processing devices. Circularly polarized light can be used to generate spin/valley current in monolayer 2D transition metal dichalcogenides. We observe a geometrically dependent photocurrent in heterostructure MoS2/WSe2, where light with a different circular polarization generates photocurrents in opposite directions. Furthermore, we show that this photocurrent persists even at room temperature, and it can be controlled using an in-plane electric field and back gating. We explain the observed phenomena via valley-dependent valence band shift and the valley optical selection rule. This finding may facilitate the use of 2D heterostructures as a platform for opto-valleytronics and opto-spintronics devices.

[1]  K. Dini,et al.  Robust room temperature valley Hall effect of interlayer excitons. , 2019, Nano letters.

[2]  Lei Liu,et al.  Electrical Control of Circular Photogalvanic Spin-Valley Photocurrent in a Monolayer Semiconductor. , 2019, ACS applied materials & interfaces.

[3]  T. Heinz,et al.  Ultrafast dynamics in van der Waals heterostructures , 2018, Nature Nanotechnology.

[4]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[5]  S. Banerjee,et al.  Evidence for moiré excitons in van der Waals heterostructures , 2018, Nature.

[6]  I. Žutić,et al.  Proximitized materials , 2018, Materials Today.

[7]  J. You,et al.  Symmetry regimes for circular photocurrents in monolayer MoSe2 , 2018, Nature Communications.

[8]  Kenji Watanabe,et al.  Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2 , 2018, Nature Physics.

[9]  C. Kane,et al.  Spatially dispersive circular photogalvanic effect in a Weyl semimetal , 2018, Nature Materials.

[10]  Xiaodong Xu,et al.  Moiré excitons: From programmable quantum emitter arrays to spin-orbit–coupled artificial lattices , 2017, Science Advances.

[11]  D. Costanzo,et al.  Microscopic Origin of the Valley Hall Effect in Transition Metal Dichalcogenides Revealed by Wavelength-Dependent Mapping. , 2017, Nano letters.

[12]  Q. Xiong,et al.  Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.

[13]  Jonghwan Kim,et al.  Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures , 2016, Science Advances.

[14]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[15]  A. Morpurgo,et al.  Strong interface-induced spin–orbit interaction in graphene on WS2 , 2015, Nature Communications.

[16]  C. Soci,et al.  Dichroic spin–valley photocurrent in monolayer molybdenum disulphide , 2015, Nature Communications.

[17]  X. Marie,et al.  Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers , 2014, 1407.5862.

[18]  Xiaodong Xu,et al.  Nonlinear valley and spin currents from Fermi pocket anisotropy in 2D crystals. , 2014, Physical review letters.

[19]  P. L. McEuen,et al.  The valley Hall effect in MoS2 transistors , 2014, Science.

[20]  Hongtao Yuan,et al.  Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2. , 2014, Nature nanotechnology.

[21]  X. Marie,et al.  Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides , 2014, 1403.0108.

[22]  Shengyuan A. Yang,et al.  Field induced positional shift of Bloch electrons and its dynamical implications. , 2014, Physical review letters.

[23]  Tao Yu,et al.  Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS 2 , 2013, 1401.0047.

[24]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[25]  P. Tan,et al.  Robust optical emission polarization in MoS2 monolayers through selective valley excitation , 2012, 1206.5128.

[26]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[27]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[28]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[29]  L. Levitov,et al.  Shockley-Ramo theorem and long-range photocurrent response in gapless materials , 2011, 1112.5654.

[30]  E. Wang,et al.  MoS_2 as an ideal material for valleytronics: valley-selective circular dichroism and valley Hall effect , 2011, 1112.4013.

[31]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[32]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[33]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[34]  Q. Niu,et al.  Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects , 1999, cond-mat/9908003.

[35]  Chang,et al.  Berry phase, hyperorbits, and the Hofstadter spectrum. , 1995, Physical review letters.

[36]  M.C.Chang,et al.  Berry phase, hyperorbits, and the Hofstadter spectrum , 1995, cond-mat/9505021.

[37]  Q. Xiong,et al.  Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures , 2017, Nature Communications.