Essential equivalence of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) and steepest-entropy-ascent models of dissipation for nonequilibrium thermodynamics.

By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.

[1]  H. Ch. Öttinger,et al.  Beyond Equilibrium Thermodynamics , 2005 .

[2]  Gian Paolo Beretta Nonlinear model dynamics for closed-system, constrained, maximal-entropy-generation relaxation by energy redistribution. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[4]  Gian Paolo Beretta,et al.  The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics , 2012, Entropy.

[5]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[6]  Gian Paolo Beretta,et al.  Steepest Entropy Ascent in Quantum Thermodynamics , 1987 .

[7]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[8]  C. Carathéodory Untersuchungen über die Grundlagen der Thermodynamik , 1909 .

[9]  E. Lieb,et al.  The entropy concept for non-equilibrium states , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  R. Levine,et al.  Geometry in classical statistical thermodynamics , 1986 .

[11]  Robert Hermann,et al.  Geometry, physics, and systems , 1973 .

[12]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[13]  John Maddox Uniting mechanics and statistics , 1985, Nature.

[14]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[15]  H. C. Ottinger Nonequilibrium thermodynamics for open systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  Gian Paolo Beretta NONLINEAR EXTENSIONS OF SCHRÖDINGER–VON NEUMANN QUANTUM DYNAMICS: A SET OF NECESSARY CONDITIONS FOR COMPATIBILITY WITH THERMODYNAMICS , 2004 .

[17]  Gian Paolo Beretta,et al.  Effect of irreversible atomic relaxation on resonance fluorescence, absorption, and stimulated emission , 1985 .

[18]  M. Grmela Bracket formulation of diffusion-convection equations , 1986 .

[19]  T. Ratiu,et al.  Banach Lie-Poisson Spaces and Reduction , 2002, math/0210207.

[20]  R. Mrugala,et al.  On contact and metric structures on thermodynamic spaces (量子情報と量子カオスの数理) , 2000 .

[21]  Gian Paolo Beretta,et al.  Modeling Non-Equilibrium Dynamics of a Discrete Probability Distribution: General Rate Equation for Maximal Entropy Generation in a Maximum-Entropy Landscape with Time-Dependent Constraints , 2008, Entropy.

[22]  Gian Paolo Beretta,et al.  Steepest-entropy-ascent quantum thermodynamic modeling of decoherence in two different microscopic composite systems , 2015 .

[23]  P. Stefan Accessible Sets, Orbits, and Foliations with Singularities , 1974 .

[24]  Gian Paolo Beretta,et al.  Maximum entropy production rate in quantum thermodynamics , 2010 .

[25]  A. N. Gorban,et al.  Constructive methods of invariant manifolds for kinetic problems , 2003 .

[26]  Gian Paolo Beretta,et al.  Quantum thermodynamics. A new equation of motion for a single constituent of matter , 1984 .

[27]  Miroslav Grmela,et al.  Contact Geometry of Mesoscopic Thermodynamics and Dynamics , 2014, Entropy.

[28]  R. Preuss,et al.  Maximum entropy and Bayesian data analysis: Entropic prior distributions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  S. Gheorghiu-Svirschevski Addendum to "Nonlinear quantum evolution with maximal entropy production" , 2001 .

[30]  Gian Paolo Beretta,et al.  Recent Progress in the Definition of Thermodynamic Entropy , 2014, Entropy.

[31]  Gian Paolo Beretta,et al.  Steepest Entropy Ascent Models of the Boltzmann Equation: Comparisons With Hard-Sphere Dynamics and Relaxation-Time Models for Homogeneous Relaxation From Highly Non-Equilibrium States , 2013 .

[32]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[33]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[34]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[35]  Stanislaw Sieniutycz,et al.  From a least action principle to mass action law and extended affinity , 1987 .

[36]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[37]  Martin Kröger,et al.  Symbolic test of the Jacobi identity for given generalized ‘Poisson’ bracket , 2001 .

[38]  George N. Hatsopoulos,et al.  Principles of general thermodynamics , 1965 .

[39]  Maureen T. Carroll Geometry , 2017, MAlkahtani Mathematics.

[40]  Grmela Thermodynamics of driven systems. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Philip Morrison Thoughts on brackets and dissipation: Old and new , 2009 .

[42]  Gian Paolo Beretta,et al.  Entropy and irreversibility for a single isolated two level system: New individual quantum states and new nonlinear equation of motion , 1985 .

[43]  Gian Paolo Beretta,et al.  Rigorous and General Definition of Thermodynamic Entropy , 2011 .

[44]  Carlo Cercignani,et al.  MATHEMATICAL METHODS FOR BOUNDARY VALUE PROBLEMS IN KINETIC THEORY , 1974 .

[45]  Gian Paolo Beretta A General Nonlinear Evolution Equation for Irreversible Conservative Approach to Stable Equilibrium , 1986 .

[46]  Gian Paolo Beretta,et al.  A theorem on Lyapunov stability for dynamical systems and a conjecture on a property of entropy , 1986 .

[47]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[48]  Ariel Caticha,et al.  Entropic Dynamics , 2001, Entropy.

[49]  S. Gheorghiu-Svirschevski Nonlinear quantum evolution with maximal entropy production , 2001 .

[50]  Gian Paolo Beretta,et al.  Nonlinear quantum evolution equations to model irreversible adiabatic relaxation with maximal entropy production and other nonunitary processes , 2009, 0907.1977.

[51]  H. Quevedo Black hole geometrothermodynamics , 2017 .

[52]  N. Caticha,et al.  Gradient descent learning in and out of equilibrium. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  F. Hiai,et al.  Sufficiency, KMS condition and relative entropy in von Neumann algebras. , 1981 .

[54]  H. C. Öttinger GENERIC Formulation of Boltzmann’s Kinetic Equation , 1997 .

[55]  Miroslav Grmela,et al.  Extensions of nondissipative continuum mechanics toward complex fluids and complex solids , 2013 .

[56]  Gian Paolo Beretta Steepest Entropy Ascent Model for Far-Non-Equilibrium Thermodynamics. Unified Implementation of the Maximum Entropy Production Principle , 2014 .

[57]  A. Caticha Entropic dynamics, time and quantum theory , 2010, 1005.2357.

[58]  Gian Paolo Beretta,et al.  Thermodynamics: Foundations and Applications , 1991 .