Role of Self-Heating and Polarization in AlGaN/GaN-Based Heterostructures

The interplay of self-heating and polarization affecting resistance is studied in AlGaN/GaN transmission line model (TLM) heterostructures with a scaled source-to-drain distance. This paper is based on meticulously calibrated TCAD simulations against I-V experimental data using an electro-thermal model. The electro-thermal simulations show hot-spots (with peak temperature in a range of ~566 K–373 K) at the edge of the drain contact due to a large electric field. The electrical stress on Ohmic contacts reduces the total polarization, leading to the inverse/converse piezoelectric effect. This inverse effect decreases the polarization by 7%, 10%, and 17% during a scaling of the source-to-drain distance in the 12 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>, 8 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula>, and 4 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> TLM heterostructures, respectively, when compared with the largest 18-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> heterostructure.

[1]  L. Bera,et al.  Comparison of the AlxGa1–xN/GaN Heterostructures Grown on Silicon-on-Insulator and Bulk-Silicon Substrates , 2016, IEEE Transactions on Electron Devices.

[2]  Seong-Yong Park,et al.  TEM Observation of Crack- and Pit-Shaped Defects in Electrically Degraded GaN HEMTs , 2008, IEEE Electron Device Letters.

[3]  Gerhard K. M. Wachutka,et al.  Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[4]  W. Hong,et al.  A Compact 60W X-Band GaN HEMT Power Amplifier MMIC , 2017, IEEE Microwave and Wireless Components Letters.

[5]  G. Meneghesso,et al.  Investigation of High-Electric-Field Degradation Effects in AlGaN/GaN HEMTs , 2008, IEEE Transactions on Electron Devices.

[6]  Y. Cordier,et al.  Power Performance of AlGaN/GaN High-Electron-Mobility Transistors on (110) Silicon Substrate at 40 GHz , 2013, IEEE Electron Device Letters.

[7]  Y. Uemoto,et al.  GaN power switching devices , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[8]  H. Shibata,et al.  High Thermal Conductivity of Gallium Nitride (GaN) Crystals Grown by HVPE Process , 2007 .

[9]  S. Taking AlN/GaN MOS-HEMTs technology , 2012 .

[10]  Dionyz Pogany,et al.  Self-Heating in GaN Transistors Designed for High-Power Operation , 2014, IEEE Transactions on Electron Devices.

[11]  K. Kalna,et al.  Effects of Self-Heating on Performance Degradation in AlGaN/GaN-Based Devices , 2009, IEEE Transactions on Electron Devices.

[12]  Giovanni Ghione,et al.  Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries , 2001 .

[13]  M. Uren,et al.  Buffer Design to Minimize Current Collapse in GaN/AlGaN HFETs , 2012, IEEE Transactions on Electron Devices.

[14]  L. Xia,et al.  Gate Current Degradation Mechanisms of GaN High Electron Mobility Transistors , 2007, 2007 IEEE International Electron Devices Meeting.

[15]  F. Wang,et al.  Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges , 2016, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[16]  Michael S. Shur,et al.  Transient electron transport in wurtzite GaN, InN, and AlN , 1999 .

[17]  Y. Lin,et al.  Nitrogen-vacancy-related defects and Fermi level pinning in n-GaN Schottky diodes , 2003 .

[18]  R.J. Trew,et al.  High-frequency solid-state electronic devices , 2005, IEEE Transactions on Electron Devices.

[19]  S. Denbaars,et al.  AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy , 2001 .

[20]  Rongming Chu Gate-recessed GaN high electron mobility transistors with scaled gate length , 2008 .

[21]  Siegfried Selberherr,et al.  Process and device modeling for VISI , 1984 .

[22]  Rudiger Quay,et al.  Analysis and Simulation of Heterostructure Devices , 2004 .

[23]  C. Gaquière,et al.  Proposal and Performance Analysis of Normally Off $ \hbox{n}^{++}$ GaN/InAlN/AlN/GaN HEMTs With 1-nm-Thick InAlN Barrier , 2010, IEEE Transactions on Electron Devices.

[24]  U. Mishra,et al.  The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs , 2001 .

[25]  Density-dependent electron transport and precise modeling of GaN high electron mobility transistors , 2015, 1508.07050.

[26]  K. Kosiel,et al.  Stretching magnetism with an electric field in a nitride semiconductor , 2016, Nature Communications.

[27]  T. Sadi,et al.  Investigation of Self-Heating Effects in Submicrometer GaN/AlGaN HEMTs Using an Electrothermal Monte Carlo Method , 2006, IEEE Transactions on Electron Devices.

[28]  M. Kuball,et al.  Micro-Raman temperature measurements for electric field assessment in active AlGaN-GaN HFETs , 2004, IEEE Electron Device Letters.

[29]  R. E. Thomas,et al.  Carrier mobilities in silicon empirically related to doping and field , 1967 .

[30]  Yu Wang,et al.  AlGaN/GaN high electron mobility transistors on Si(111) substrates , 2001 .

[31]  Christian Dua,et al.  Wide band gap semiconductor reliability : Status and trends , 2003, Microelectron. Reliab..