Constructing Symmetric Boolean Functions With Maximum Algebraic Immunity

Symmetric Boolean functions with even variables 2k and maximum algebraic immunity AI(f) = k have been constructed in Braeken's thesis (2006). In this paper, we show more constructions of such Boolean functions including the generalization of a result and prove a conjecture raised in Braeken's thesis (2006).

[1]  Lynn Margaret Batten Algebraic Attacks Over GF(q) , 2004, INDOCRYPT.

[2]  Frederik Armknecht,et al.  Improving Fast Algebraic Attacks , 2004, FSE.

[3]  Josef Pieprzyk,et al.  Cryptanalysis of Block Ciphers with Overdefined Systems of Equations , 2002, ASIACRYPT.

[4]  Richard M. Wilson,et al.  A Diagonal Form for the Incidence Matrices of t-Subsets vs.k-Subsets , 1990, Eur. J. Comb..

[5]  Nicolas Courtois Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.

[6]  Bart Preneel,et al.  On the Algebraic Immunity of Symmetric Boolean Functions , 2005, INDOCRYPT.

[7]  An Braeken,et al.  Cryptographic Properties of Boolean Functions and S-Boxes (Cryptografische eigenschappen van Booleaanse functies en S-Boxen) , 2006 .

[8]  Subhamoy Maitra,et al.  Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity , 2006, Des. Codes Cryptogr..

[9]  Willi Meier,et al.  Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.

[10]  Subhamoy Maitra,et al.  Results on Algebraic Immunity for Cryptographically Significant Boolean Functions , 2004, INDOCRYPT.

[11]  Chao Li,et al.  A Note on Symmetric Boolean Functions With Maximum Algebraic Immunity in Odd Number of Variables , 2007, IEEE Transactions on Information Theory.

[12]  Claude Carlet,et al.  Algebraic immunity for cryptographically significant Boolean functions: analysis and construction , 2006, IEEE Transactions on Information Theory.

[13]  Claude Carlet,et al.  Algebraic Attacks and Decomposition of Boolean Functions , 2004, EUROCRYPT.