High-Pressure Microdischarges: Sources of Ultraviolet Radiation

Spatially confined plasmas with dimensions in the submillimeter range have been found to be stable at atmospheric pressure. These microplasmas are nonequilibrium plasmas with an electron energy distribution which contains a significant fraction of high energy electrons. This favors, in combination with the high gas density, the formation of excimers. The possibility for operating these discharges in parallel, or expanding the nonequilibrium plasma two-dimensionally on a flat cathode allows for extended area light-sources, including excimer lamps. The spectral range of these lamps reaches from the visible into the vacuum ultraviolet, down to wavelengths of 75 nm for helium excimer radiation. Highest efficiencies of 6-9% were obtained for xenon excimers when the discharge was operated dc, and 20% when operated in a nanosecond pulsed mode. Besides excimer radiation, microdischarges have also been shown to emit intense line radiation in the vacuum ultraviolet when noble gases with small admixtures of hydrogen and oxygen were used. In this paper, we discuss basic properties of several types of high-pressure microplasmas, focusing on their dc and pulsed dc operation, followed by an overview of the experimental and modeling results relevant for their use as ultraviolet light sources. The prospect of developing microplasma lamps by forming arrays of microdischarges and possibly excimer lasers by operating microdischarges in series is briefly discussed.

[1]  K. Frank,et al.  Comparison between the ultraviolet emission from pulsed microhollow cathode discharges in xenon and argon , 2003 .

[2]  T. Detemple,et al.  Continuous-wave emission in the ultraviolet from diatomic excimers in a microdischarge , 1998 .

[3]  K. Schoenbach,et al.  Resonant energy transfer from argon dimers to atomic oxygen in microhollow cathode discharges , 2001 .

[4]  R. M. Sankaran,et al.  Argon excimer emission from high-pressure microdischarges in metal capillaries , 2003 .

[5]  J. Eden,et al.  Arrays of microdischarge devices having 50-100 μm square pyramidal Si anodes and screen cathodes , 2001 .

[6]  P. Gill,et al.  Electron energy distributions in the negative glow and their relevance to hollow cathode lasers , 1977 .

[7]  A. White NEW HOLLOW CATHODE GLOW DISCHARGE , 1959 .

[8]  K. Becker,et al.  Excimer formation in high-pressure microhollow cathode discharge plasmas in helium initiated by low-energy electron collisions , 2001 .

[9]  U. Kogelschatz,et al.  Applications of Microplasmas and Microreactor Technology , 2007 .

[10]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[11]  Jack Chen,et al.  Silicon microdischarge devices having inverted pyramidal cathodes: Fabrication and performance of arrays , 2001 .

[12]  Erich E. Kunhardt,et al.  Generation of large-volume, atmospheric-pressure, nonequilibrium plasmas , 2000 .

[13]  Jack Chen,et al.  Independently addressable subarrays of silicon microdischarge devices: Electrical characteristics of large (30×30) arrays and excitation of a phosphor , 2001 .

[14]  M. Benilov,et al.  Multiple solutions in the theory of dc glow discharges , 2010 .

[15]  B. Cherrington Gaseous Electronics and Gas Lasers , 2014 .

[16]  K. Schoenbach,et al.  Electron heating in atmospheric pressure glow discharges , 2001 .

[17]  James L. Walsh,et al.  Microplasmas: sources, particle kinetics, and biomedical applications , 2008 .

[18]  K. Schoenbach,et al.  Series operation of direct current xenon chloride excimer sources , 2000 .

[19]  K. Schoenbach,et al.  Parallel operation of microhollow cathode discharges , 1998, ICOPS 2000. IEEE Conference Record - Abstracts. 27th IEEE International Conference on Plasma Science (Cat. No.00CH37087).

[20]  Karl H. Schoenbach,et al.  Emission of excimer radiation from direct current, high-pressure hollow cathode discharges , 1998 .

[21]  J. Rice,et al.  Enhancement by helium and argon of the formation rate of the 1720‐Å‐radiating states of Xe*2 excited by an E beam , 1975 .

[22]  Clark J. Wagner,et al.  Microdischarge arrays: a new family of photonic devices , 2002 .

[23]  K. Schoenbach,et al.  Direct current glow discharges in atmospheric air , 1999 .

[24]  E. Kindel,et al.  Comprehensive parameter study of a micro-hollow cathode discharge containing xenon , 2002 .

[25]  J. Chen,et al.  Microdischarge devices with 10 or 30 μm square silicon cathode cavities: pd scaling and production of the XeO excimer , 2004 .

[26]  M. Benilov,et al.  Three-Dimensional Modeling of Self-Organization in DC Glow Microdischarges , 2011, IEEE Transactions on Plasma Science.

[27]  J. Chen,et al.  Arrays of silicon microdischarge devices with multicomponent dielectrics. , 2001, Optics letters.

[28]  James Dillon Cobine,et al.  Gaseous conductors : theory and engineering applications , 1958 .

[29]  Mark J. Kushner,et al.  Modeling of microdischarge devices: Pyramidal structures , 2004 .

[30]  James Gary Eden,et al.  Development and characterization of micromachined hollow cathode plasma display devices , 2002 .

[31]  K. Schoenbach,et al.  Nanosecond pulse generators for microdischarge excimer lamps , 2003, Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No.03CH37472).

[32]  Karl H. Schoenbach,et al.  Generation of intense excimer radiation from high-pressure hollow cathode discharges , 1998 .

[33]  C. Penache,et al.  Characterization of a high-pressure microdischarge using diode laser atomic absorption spectroscopy , 2002 .

[34]  K. Schoenbach,et al.  A flat glow discharge excimer radiation source , 2002 .

[35]  Karl H. Schoenbach,et al.  Vacuum ultraviolet spectroscopy of microhollow cathode discharge plasmas , 2002, Other Conferences.

[36]  J. Eden,et al.  New opportunities for plasma science in nonequilibrium low-temperature plasmas confined to microcavities: There's plenty of room at the bottom , 2006 .

[37]  M. Benilov,et al.  Analysing bifurcations encountered in numerical modelling of current transfer to cathodes of dc glow and arc discharges , 2009 .

[38]  B. Vojak,et al.  Linear, segmented microdischarge array with an active length of ∼1 cm: cw and pulsed operation in the rare gases and evidence of gain on the 460.30 nm transition of Xe+ , 2003 .

[39]  N. Ostrom,et al.  40000pixel arrays of ac-excited silicon microcavity plasma devices , 2005 .

[40]  Franklin Chau-Nan Hong,et al.  Radio-frequency microdischarge arrays for large-area cold atmospheric plasma generation , 2003 .

[41]  K. Schoenbach,et al.  Microhollow cathode discharge excimer lamps , 2000 .

[42]  J. Eden,et al.  Microcavity plasma devices and arrays: a new realm of plasma physics and photonic applications , 2005 .

[43]  T. Detemple,et al.  Microdischarge devices fabricated in silicon , 1997 .

[44]  K. Schoenbach,et al.  Microhollow cathode discharges , 2003 .

[45]  S. Müller,et al.  Formation and decay mechanisms of excimer molecules in dielectric barrier discharges , 2000 .

[46]  K. Schoenbach,et al.  Self-organization in cathode boundary layer microdischarges , 2004 .

[47]  K. Becker,et al.  Collisional and radiative processes in high-pressure discharge plasmas , 2002 .

[48]  Karl H. Schoenbach,et al.  High-pressure hollow cathode discharges , 1997 .

[49]  K. Frank,et al.  Excimer emission from microhollow cathode argon discharges , 2003 .

[50]  K. Schoenbach,et al.  Excimer emission from cathode boundary layer discharges , 2004 .

[51]  M. Kushner Modelling of microdischarge devices: plasma and gas dynamics , 2005 .

[52]  Konstantinos P. Giapis,et al.  High-pressure micro-discharges in etching and deposition applications , 2003 .

[53]  K. Schoenbach,et al.  Xenon excimer emission from pulsed microhollow cathode discharges , 2001 .

[54]  J. R. Cooper,et al.  Direct current planar excimer source , 2007 .

[55]  Jack Chen,et al.  Microplasma devices fabricated in silicon, ceramic, and metal/polymer structures: Arrays, emitters and photodetectors , 2003 .

[56]  K. Schoenbach,et al.  Self-organization in cathode boundary layer discharges in xenon , 2006 .

[57]  K. Schoenbach,et al.  Predicted properties of microhollow cathode discharges in xenon , 2005 .

[58]  Sung-Jin Park,et al.  Multistage, monolithic ceramic microdischarge device having an active length of ∼0.27 mm , 2001 .

[59]  K. Becker,et al.  Hydrogen Lyman-alpha and Lyman-beta emissions from high-pressure microhollow cathode discharges in Ne-H2 mixtures , 1999 .