Using Entropy to Identify Shape and Text in Hand Drawn Diagrams
暂无分享,去创建一个
Most sketch recognition systems are accurate in recognizing either text or shape (graphic) ink strokes, but not both. Distinguishing between shape and text strokes is, therefore, a critical task in recognizing hand drawn digital ink diagrams which commonly contain many text labels and annotations. We have found the ‘entropy rate’ to be an accurate criterion of classification. We found that the entropy rate is significantly higher for text strokes compared to shape strokes and can serve as a distinguishing factor between the two. Using entropy values, our system produced a correct classification rate of 92.06% on test data belonging to diagrammatic domain for which the threshold was trained on. It also performed favorably on data for which no training examples at all were supplied.