Optimal filter analysis of energy-dependent pulse shapes and its application to TES detectors

Abstract We present a method for applying optimal filtering to data sets containing energy-dependent pulse shapes. This occurs frequently in transition edge sensors (TES) when dealing with signal energies that are close to the saturation point of the detector. Different filter templates are created which span the dynamic range desired for the TES. These filters are then used as templates to filter the data, using interpolation to bridge the gap between templates. The method has been demonstrated on our tungsten (W) TES. We present the latest results from heat-pulse data on a (125 μm ) 2 TES with resolutions of 3 eV FWHM at 42 eV and 4 eV FWHM at 1.42 keV with the same sensor demonstrating the wide band operation possible with this technique.