A simple and effective gradient recovery scheme and a posteriori error estimator for the Virtual Element Method (VEM)
暂无分享,去创建一个
Glaucio H. Paulino | Lourenço Beirão da Veiga | Heng Chi | G. Paulino | Heng Chi | L. Beirão da Veiga | L. Veiga
[1] Peter Wriggers,et al. A virtual element method for contact , 2016 .
[2] Franco Dassi,et al. High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..
[3] Shaochun Chen,et al. The nonconforming virtual element method for plate bending problems , 2016 .
[4] Alessandro Colombo,et al. Agglomeration-based physical frame dG discretizations: An attempt to be mesh free , 2014 .
[5] Robert L. Taylor,et al. VEM for Inelastic Solids , 2018 .
[6] Ted Belytschko,et al. Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements , 1994 .
[7] Chandrajit L. Bajaj,et al. Quadratic serendipity finite elements on polygons using generalized barycentric coordinates , 2011, Math. Comput..
[8] Zhimin Zhang,et al. A Posteriori Error Estimates Based on the Polynomial Preserving Recovery , 2004, SIAM J. Numer. Anal..
[9] Glaucio H. Paulino,et al. Polygonal multiresolution topology optimization (PolyMTOP) for structural dynamics , 2016 .
[10] Rüdiger Verfürth,et al. A Posteriori Error Estimation Techniques for Finite Element Methods , 2013 .
[11] Jean B. Lasserre,et al. Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra , 2015, Computational Mechanics.
[12] David Mora,et al. A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..
[13] Amir R. Khoei,et al. A polygonal finite element method for modeling arbitrary interfaces in large deformation problems , 2012 .
[14] Glaucio H. Paulino,et al. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .
[15] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[16] E. Artioli,et al. Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem , 2017, Computational Mechanics.
[17] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[18] G. Paulino,et al. PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab , 2012 .
[19] H. Nguyen-Xuan. A polytree‐based adaptive polygonal finite element method for topology optimization , 2017 .
[20] Ahmed Naga,et al. THE POLYNOMIAL-PRESERVING RECOVERY FOR HIGHER ORDER FINITE ELEMENT METHODS IN 2D AND 3D , 2005 .
[21] Glaucio H. Paulino,et al. Bridging art and engineering using Escher-based virtual elements , 2015 .
[22] N. Sukumar,et al. Conforming polygonal finite elements , 2004 .
[23] Bijan Boroomand,et al. RECOVERY BY EQUILIBRIUM IN PATCHES (REP) , 1997 .
[24] Lourenco Beirao da Veiga,et al. Stability Analysis for the Virtual Element Method , 2016, 1607.05988.
[25] M. Ainsworth,et al. A posteriori error estimators in the finite element method , 1991 .
[26] Peter Wriggers,et al. A Virtual Element Method for 2D linear elastic fracture analysis , 2018, Computer Methods in Applied Mechanics and Engineering.
[27] N. Sukumar. Construction of polygonal interpolants: a maximum entropy approach , 2004 .
[28] O. C. Zienkiewicz,et al. The superconvergent patch recovery (SPR) and adaptive finite element refinement , 1992 .
[29] Joseph E. Bishop,et al. Simulating the pervasive fracture of materials and structures using randomly close packed Voronoi tessellations , 2009 .
[30] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[31] Glaucio H. Paulino,et al. Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .
[32] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[33] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[34] Simona Perotto,et al. On some new recovery-based a posteriori error estimators , 2006 .
[35] Glaucio H. Paulino,et al. Adaptive mesh refinement and coarsening for cohesive zone modeling of dynamic fracture , 2012 .
[36] Glaucio H. Paulino,et al. Unstructured polygonal meshes with adaptive refinement for the numerical simulation of dynamic cohesive fracture , 2014, International Journal of Fracture.
[37] Glaucio H. Paulino,et al. Polygonal finite elements for incompressible fluid flow , 2014 .
[38] Alessandro Russo,et al. $$H({\text {div}})$$H(div) and $$H(\mathbf{curl})$$H(curl)-conforming virtual element methods , 2016 .
[39] Peter Wriggers,et al. Polygonal finite element methods for contact-impact problems on non-conformal meshes , 2014 .
[40] Alvise Sommariva,et al. Gauss-Green cubature and moment computation over arbitrary geometries , 2009, J. Comput. Appl. Math..
[41] Michael S. Floater,et al. Gradient Bounds for Wachspress Coordinates on Polytopes , 2013, SIAM J. Numer. Anal..
[42] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .
[43] Lourenço Beirão da Veiga,et al. H(div)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H({\text {div}})$$\end{document} and H(curl)\documentclass[12pt] , 2015, Numerische Mathematik.
[44] Peter Wriggers,et al. A low order 3D virtual element formulation for finite elasto–plastic deformations , 2017, Computational Mechanics.
[45] P. Tesini,et al. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations , 2012, J. Comput. Phys..
[46] Bijan Boroomand,et al. An improved REP recovery and the effectivity robustness test , 1997 .
[47] Sergej Rjasanow,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .
[48] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[49] M. Floater. Mean value coordinates , 2003, Computer Aided Geometric Design.
[50] Steffen Weißer,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes , 2022 .
[51] Gianmarco Manzini,et al. Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .
[52] Glaucio H. Paulino,et al. PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes , 2012 .
[53] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[54] Gianmarco Manzini,et al. Arbitrary-Order Nodal Mimetic Discretizations of Elliptic Problems on Polygonal Meshes , 2011, SIAM J. Numer. Anal..
[55] Peter Wriggers,et al. Efficient virtual element formulations for compressible and incompressible finite deformations , 2017 .
[56] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[57] Zhimin Zhang. POLYNOMIAL PRESERVING GRADIENT RECOVERY AND A POSTERIORI ESTIMATE FOR BILINEAR ELEMENT ON IRREGULAR QUADRILATERALS , 2004 .
[58] P. Steinmann,et al. Adaptive Poly-FEM for the analysis of plane elasticity problems , 2017 .
[59] L. Beirao da Veiga,et al. A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.
[60] S. de Miranda,et al. A stress/displacement Virtual Element method for plane elasticity problems , 2017, 1702.01702.
[61] Leszek Demkowicz,et al. High-order polygonal discontinuous Petrov–Galerkin (PolyDPG) methods using ultraweak formulations , 2017, 1706.06754.
[62] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[63] N. Sukumar,et al. Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .
[64] Franco Brezzi,et al. Virtual Element Methods for plate bending problems , 2013 .
[65] Glaucio H. Paulino,et al. Polygonal finite elements for finite elasticity , 2015 .
[66] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .