GA2 index of some graph operations

Let G = (V, E) be a graph. For e = uv ∈ E(G), nu (e) is the number of vertices of G lying closer to u than to v and nv (e) is the number of vertices of G lying closer to v than u. The GA2 index of G is defined as ∑uv∈E(G) 2√ nu(e)nv(e) / nu(e) + nv(e). We explore here some mathematical properties and present explicit formulas for this new index under several graph operations. 2010 Mathematics Subject Classifications. 05C12, 05A15, 05A20, 05C05. .

[1]  Ali Reza Ashrafi,et al.  WIENER-TYPE INVARIANTS OF SOME GRAPH OPERATIONS ∗ , 2009 .

[2]  Yeong-Nan Yeh,et al.  The Wiener polynomial of a graph , 1996 .

[3]  N. Trinajstic Chemical Graph Theory , 1992 .

[4]  A new geometricarithmetic index , 2010 .

[5]  D. Vukicevic,et al.  Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges , 2009 .

[6]  Ali Reza Ashrafi,et al.  The first and second Zagreb indices of some graph operations , 2009, Discret. Appl. Math..

[7]  Ante Graovac,et al.  On the Wiener index of a graph , 1991 .

[8]  A new geometric–arithmetic index , 2009 .

[9]  Ali Reza Ashrafi,et al.  The Zagreb coindices of graph operations , 2010, Discret. Appl. Math..

[10]  Ali Reza Ashrafi,et al.  A matrix method for computing Szeged and vertex PI indices of join and composition of graphs , 2008 .

[11]  Ali Reza Ashrafi,et al.  Vertex and edge PI indices of Cartesian product graphs , 2008, Discret. Appl. Math..

[12]  Ali Reza Ashrafi,et al.  The hyper-Wiener index of graph operations , 2008, Comput. Math. Appl..

[13]  Ali Reza Ashrafi,et al.  The PI index of product graphs , 2008, Appl. Math. Lett..

[14]  Stephan G. Wagner,et al.  Some new results on distance-based graph invariants , 2009, Eur. J. Comb..

[15]  Ali Reza Ashrafi,et al.  Some Inequalities for Szeged-Like Topological Indices of Graphs , 2010 .

[16]  Frank Harary,et al.  Graph Theory , 2016 .

[17]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[18]  Sandi Klavžar,et al.  The Szeged and the Wiener Index of Graphs , 1996 .

[19]  W. Imrich,et al.  Product Graphs: Structure and Recognition , 2000 .

[20]  Sandi Klavzara ON THE PI INDEX: PI-PARTITIONS AND CARTESIAN PRODUCT GRAPHS , 2007 .

[21]  M. H. Khalifeh,et al.  The Edge Szeged Index of Product Graphs , 2008 .