Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres.

Folic acid-conjugated albumin nanospheres (FA-AN) have been developed to provide an actively targetable drug delivery system for improved drug targeting of cancer cells with reduced side effects. The nanospheres were prepared by conjugating folic acid onto the surface of albumin nanospheres using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as a catalyst. To test the efficacy of these nanospheres as a potential delivery platform, doxorubicin-loaded albumin nanospheres (DOX-AN) and doxorubicin-loaded FA-AN (FA-DOX-AN) were prepared by entrapping DOX (an anthracycline, antibiotic drug widely used in cancer chemotherapy that works by intercalating DNA) into AN and FA-AN nanoparticles. Cell uptake of the DOX was then measured. The results show that FA-AN was incorporated into HeLa cells (tumor cells) only after 2.0h incubation, whereas HeLa cells failed to incorporate albumin nanospheres without conjugated folic acid after 4.0h incubation. When HeLa cells were treated with the DOX-AN, FA-DOX-AN nanoparticles or free DOX, cell viability decreased with increasing culture time (i.e. cell death increases with time) over a 70h period. Cell viability was always the lowest for free DOX followed by FA-DOX-AN4 and then DOX-AN. In a second set of experiments, HeLa cells washed to remove excess DOX after an initial incubation for 2h were incubated for 70h. The corresponding cell viability was slightly higher when the cells were treated with FA-DOX-AN or free DOX whilst cells treated with DOX-AN nanoparticles remained viable. The above experiments were repeated for non-cancerous, aortic smooth muscle cells (AoSMC). As expected, cell viability of the HeLa cells (with FA receptor alpha, FRα) and AoSMC cells (without FRα) decreased rapidly with time in the presence of free DOX, but treatment with FA-DOX-AN resulted in selective killing of the tumor cells. These results indicated that FA-AN may be used as a promising actively targetable drug delivery system to improve drug targeting to cancer cells.

[1]  B. Kamen,et al.  A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. , 2004, Advanced drug delivery reviews.

[2]  E. K. Park,et al.  Preparation and characterization of methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric nanospheres for tumor-specific folate-mediated targeting of anticancer drugs. , 2004, Biomaterials.

[3]  Philip S Low,et al.  Folate-mediated delivery of macromolecular anticancer therapeutic agents. , 2002, Advanced drug delivery reviews.

[4]  Gary Bryant,et al.  Improved Particle Size Distribution Measurements Using Multiangle Dynamic Light Scattering , 1995 .

[5]  Wim E. Hennink,et al.  Thermoresponsive Polymeric Micelles with Controlled Instability Based on Hydrolytically Sensitive N-Isopropylacrylamide Copolymers , 2001 .

[6]  S. Feng,et al.  Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanoparticles for controlled delivery of anticancer drugs. , 2004, Biomaterials.

[7]  T. Dobashi,et al.  Thermosensitive polymer-conjugated albumin nanospheres as thermal targeting anti-cancer drug carrier. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  Wim E Hennink,et al.  Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[9]  Philip S Low,et al.  Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. , 2004, Advanced drug delivery reviews.

[10]  Philip S Low,et al.  Immunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[11]  R. Jain,et al.  Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[12]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[13]  M. R. Aberturas,et al.  Stability and freeze-drying of cyclosporine loaded poly(D,L lactide-glycolide) carriers. , 1999, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[14]  E. K. Park,et al.  Folate-conjugated methoxy poly(ethylene glycol)/poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[15]  Eun Seong Lee,et al.  Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. , 2008, Small.

[16]  S. Armes,et al.  New folate-functionalized biocompatible block copolymer micelles as potential anti-cancer drug delivery systems , 2006 .

[17]  J. Reddy,et al.  Folate-targeted chemotherapy. , 2004, Advanced drug delivery reviews.

[18]  L. Smith,et al.  Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression. , 1994, Gene therapy.