Ferromagnetic microwires enabled polymer composites for sensing applications

[1]  Mihail Ipatov,et al.  Exceptional electromagnetic interference shielding properties of ferromagnetic microwires enabled polymer composites , 2010 .

[2]  Akira Todoroki,et al.  Antenna/sensor multifunctional composites for the wireless detection of damage , 2009 .

[3]  Mihail Ipatov,et al.  Co-based magnetic microwire and field-tunable multifunctional macro-composites , 2009 .

[4]  C. Puttlitz,et al.  Metamaterial-based wireless strain sensors , 2009 .

[5]  Faxiang Qin,et al.  Influence of geometry o;n GMI effect of co-based magnetic composites microwires , 2009 .

[6]  V. Boria,et al.  Experimental evidence of left handed transmission through arrays of ferromagnetic microwires , 2009 .

[7]  V. Zhukova,et al.  Magnetostatic properties of Co‐rich amorphous microwires: theory and experiment , 2008 .

[8]  Felipe Bohn,et al.  Giant magnetoimpedance in FM/SiO2/Cu/SiO2/FM films at GHz frequencies , 2008 .

[9]  A. García-Arribas,et al.  Finite element method calculations of GMI in thin films and sandwiched structures: Size and edge effects , 2008 .

[10]  F. Alves,et al.  Trilayer GMI sensors based on fast stress-annealing of FeSiBCuNb ribbons , 2008 .

[11]  Hua-Xin Peng,et al.  Giant magnetoimpedance materials: Fundamentals and applications , 2008 .

[12]  V. Zhukova,et al.  Internal stress influence on FMR in amorphous glass-coated microwires , 2007 .

[13]  Y. Gan,et al.  An experimental study on electromagnetic properties of random fiber composite materials , 2007 .

[14]  A. C. Bruno,et al.  Influence of the anisotropy axis direction and ribbon geometry on the giant magnetoimpedance of Metglas® 2705M , 2006 .

[15]  G. F. Fernando,et al.  Process monitoring of fibre reinforced composites using optical fibre sensors , 2006 .

[16]  N. Manik,et al.  Dependence of frequency and amplitude of the ac current on the GMI properties of Co based amorphous wires , 2006 .

[17]  H. Chiriac,et al.  Temperature distribution in dc Joule‐heated amorphous ribbons , 2005 .

[18]  N. A. Buznikov,et al.  Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy , 2005, cond-mat/0502086.

[19]  James P. Thomas,et al.  Mechanical design and performance of composite multifunctional materials , 2004 .

[20]  D. P. Makhnovskiy,et al.  Valve-like behavior of the magnetoimpedance in the GHz range , 2004 .

[21]  Li Lu,et al.  Enhancement of giant magnetoimpedance effect of electroplated NiFe/Cu composite wires by dc Joule annealing , 2003 .

[22]  V. Zhukova,et al.  Magnetostriction in glass-coated magnetic microwires , 2003 .

[23]  S. Torquato,et al.  Multifunctional composites: optimizing microstructures for simultaneous transport of heat and electricity. , 2002, Physical review letters.

[24]  J. Gieraltowski,et al.  Giant magneto-impedance and its applications , 2002, physics/0208035.

[25]  L. Panina Asymmetrical giant magneto-impedance (AGMI) in amorphous wires , 2002 .

[26]  M. Vázquez,et al.  Soft magnetic wires , 2001 .

[27]  L. Panina,et al.  Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: helical and circumferential , 2001, physics/0208012.

[28]  M. N. Baibich,et al.  Development of granular structure in Cu/sub 90/Co/sub 10/ ribbons through furnace and current annealing , 2000 .

[29]  Cheolgi Kim,et al.  Evaluation of anisotropy field in amorphous Fe71+xNb7B22-x alloys by GMI measurement , 2000 .

[30]  A. F. Prokoshin,et al.  Residual quenching stresses in glass-coated amorphous ferromagnetic microwires , 2000 .

[31]  A. Hernando,et al.  Thermal dependence of magnetic properties in nanocrystalline FeSiBCuNb wires and microwires , 1999 .

[32]  S. Baranov,et al.  The internal stresses dependence of the magnetic properties of cast amorphous microwires covered with glass insulation , 1999 .

[33]  A. Zhukov,et al.  Magnetic properties of amorphous and devitrified FeSiBCuNb glass-coated microwires , 1996 .

[34]  David Ménard,et al.  Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent , 1996 .

[35]  García,et al.  Dynamic magnetostatic interaction between amorphous ferromagnetic wires. , 1996, Physical review. B, Condensed matter.

[36]  A. Zhukov,et al.  Magnetoelastic anisotropy distribution in glass-coated microwires , 1996 .

[37]  Yutaka Nonomura,et al.  Enhancement of giant magneto-impedance in layered film by insulator separation , 1996 .

[38]  H. Chiriac,et al.  Internal stresses in highly magnetostrictive glass-covered amorphous wires , 1996 .

[39]  Tsuyoshi Uchiyama,et al.  Giant magneto-impedance in Co-rich amorphous wires and films , 1995 .

[40]  L. V. Panina,et al.  Magneto‐impedance effect in amorphous wires , 1994 .

[41]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[42]  G. F. Taylor A Method of Drawing Metallic Filaments and a Discussion of their Properties and Uses , 1924 .

[43]  S. Yoshikado,et al.  Composite electromagnetic wave absorber made of soft magnetic material and polystyrene resin and control of permeability and permittivity , 2010 .

[44]  F. Qin,et al.  Influence of varying metal-to-glass ratio on GMI effect in Co70.3Fe3.7B10Si13Cr3 amorphous glass-coated microwires , 2010 .

[45]  L. Panina,et al.  INFLUENCE OF GEOMETRY ON GMI EFFECT OF Co-BASED MAGNETIC COMPOSITE MICROWIRES , 2009 .

[46]  M. N. Baibich,et al.  Development of Granular Structure in Cu 9 0 Co 10 Ribbons Through Furnace and Current Annealing , 2001 .

[47]  M. Vázquez,et al.  Power absorption and ferromagnetic resonance in Co-rich metallic glasses , 2001 .

[48]  Y. Háddad Advanced multilayered and fibre-reinforced composites , 1998 .