Ni coarsening in Ni-yttria stabilized zirconia electrodes: three-dimensional quantitative phase-field simulations supported by ex-situ ptychographic nano-tomography

[1]  Jing Zhong,et al.  A novel computational model for isotropic interfacial energies in multicomponent alloys and its coupling with phase-field model with finite interface dissipation , 2022, Journal of Materials Science & Technology.

[2]  D. Mangelinck,et al.  Dewetting of Ni silicide thin film on Si substrate: In-situ experimental study and phase-field modelling , 2021, Acta Materialia.

[3]  P. S. Jørgensen,et al.  Towards the Validation of a Phase Field Model for Ni Coarsening in Solid Oxide Cells , 2021 .

[4]  Gregory A. Hackett,et al.  Phase field simulation of anode microstructure evolution of solid oxide fuel cell through Ni(OH)2 diffusion , 2021 .

[5]  Michael J. Hoffmann,et al.  A Thermal Grooving Study of Relative Grain Boundary Energies of Nickel in Polycrystalline Ni and in a Ni/YSZ Anode Measured by Atomic Force Microscopy , 2020, Acta Materialia.

[6]  Miao Chen,et al.  A Parametric Three-Dimensional Phase-Field Study of the Physical Vapor Deposition Process of Metal Thin Films Aiming at Quantitative Simulations , 2019, Coatings.

[7]  P. S. Jørgensen,et al.  3D Microstructural Characterization of Ni/YSZ Electrodes Exposed to 1 Year of Electrolysis Testing , 2019 .

[8]  Jong‐Won Lee,et al.  A simplified approach to predict performance degradation of a solid oxide fuel cell anode , 2018, Journal of Power Sources.

[9]  P. S. Jørgensen,et al.  Three dimensional characterization of nickel coarsening in solid oxide cells via ex-situ ptychographic nano-tomography , 2018 .

[10]  Z. Jiao,et al.  Prediction of Nickel Morphological Evolution in Composite Solid Oxide Fuel Cell Anode Using Modified Phase Field Model , 2018 .

[11]  Tomohiro Takaki,et al.  Ultra-large-scale phase-field simulation study of ideal grain growth , 2017, npj Computational Materials.

[12]  Xin Sun,et al.  A review: applications of the phase field method in predicting microstructure and property evolution of irradiated nuclear materials , 2017, npj Computational Materials.

[13]  Lijun Zhang,et al.  Phase-Field Model of Finite Interface Dissipation: A Novel Way to Directly Couple with CALPHAD Databases , 2016 .

[14]  Y. K. Chen-Wiegart,et al.  Combined electrochemical and X-ray tomography study of the high temperature evolution of Nickel – Yttria Stabilized Zirconia solid oxide fuel cell anodes , 2016 .

[15]  Rak-Hyun Song,et al.  Fundamental mechanisms involved in the degradation of nickel–yttria stabilized zirconia (Ni–YSZ) anode during solid oxide fuel cells operation: A review , 2016 .

[16]  C. Graves,et al.  Quantitative review of degradation and lifetime of solid oxide cells and stacks , 2016 .

[17]  H. Iwai,et al.  Local evolution of anode microstructure morphology in a solid oxide fuel cell after long-term stack operation , 2015 .

[18]  Yong Du,et al.  Phase-Field Simulation of Microstructure Evolution in Industrial A2214 Alloy During Solidification , 2015, Metallurgical and Materials Transactions A.

[19]  Lin Liu,et al.  Phase Field Simulation Coupling Microstructural Evolution and Crack Propagation during Performance Degradation of Solid Oxide Fuel Cells , 2015 .

[20]  P. S. Jørgensen,et al.  Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure , 2015 .

[21]  S. Jensen,et al.  Eliminating degradation in solid oxide electrochemical cells by reversible operation. , 2015, Nature Materials.

[22]  Yong Du,et al.  Effect of temperature gradient on microstructure evolution in Ni-Al-Cr bond coat/substrate systems: A phase-field study , 2015 .

[23]  P. Bleuet,et al.  Degradation study by 3D reconstruction of a nickel-yttria stabilized zirconia cathode after high temperature steam electrolysis operation , 2014 .

[24]  R. Davis,et al.  Phase wettability and microstructural evolution in solid oxide fuel cell anode materials , 2014 .

[25]  Hiroki Muroyama,et al.  Degradation of nickel–yttria-stabilized zirconia anode in solid oxide fuel cells under changing temperature and humidity conditions , 2014 .

[26]  W. Kaplan,et al.  Ni–YSZ(111) solid–solid interfacial energy , 2014, Journal of Materials Science.

[27]  O. Bunk,et al.  An instrument for 3D x-ray nano-imaging. , 2012, The Review of scientific instruments.

[28]  Jan Van herle,et al.  Three-dimensional microstructural changes in the Ni-YSZ solid oxide fuel cell anode during operation , 2012 .

[29]  M. Mogensen,et al.  Impact of Reduction Parameters on the Initial Performance and Stability of Ni/(Sc)YSZ Cermet Anodes for SOFCs , 2012 .

[30]  Nobuhide Kasagi,et al.  Quantitative Characterization of SOFC Nickel-YSZ Anode Microstructure Degradation Based on Focused-Ion-Beam 3D-Reconstruction Technique , 2012 .

[31]  W. Kaplan,et al.  The equilibrium crystal shape of nickel , 2011 .

[32]  S. Barnett,et al.  Impact of pore microstructure evolution on polarization resistance of Ni-Yttria-stabilized zirconia , 2011 .

[33]  Boris Iwanschitz,et al.  Microstructure degradation of cermet anodes for solid oxide fuel cells: Quantification of nickel grain growth in dry and in humid atmospheres , 2011 .

[34]  Scott A. Barnett,et al.  Simulation of coarsening in three-phase solid oxide fuel cell anodes , 2011 .

[35]  J. Van herle,et al.  Nickel–Zirconia Anode Degradation and Triple Phase Boundary Quantification from Microstructural Analysis , 2009 .

[36]  Marco Cannarozzo,et al.  Experimental and Theoretical Investigation of Degradation Mechanisms by Particle Coarsening in SOFC Electrodes , 2009 .

[37]  I. Steinbach Phase-field models in materials science , 2009 .

[38]  J. Warren,et al.  Phase field theory of heterogeneous crystal nucleation. , 2006, Physical review letters.

[39]  I. Steinbach,et al.  Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Mogens Bjerg Mogensen,et al.  Solid Oxide Fuel Cell Performance under Severe Operating Conditions , 2006 .

[41]  Víctor M. Pérez-García,et al.  Spectral smoothed boundary methods: The role of external boundary conditions , 2006 .

[42]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[43]  Frank Tietz,et al.  Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells , 2000 .

[44]  A. Tsoga,et al.  Surface and grain-boundary energies in yttria-stabilized zirconia (YSZ-8 mol%) , 1996 .

[45]  I. Steinbach,et al.  A phase field concept for multiphase systems , 1996 .

[46]  J. Blakely,et al.  Surface self diffusion measurements on nickel by the mass transfer method , 1961 .