Finding Hidden Independent Sets in Interval Graphs

We design efficient competitive algorithms for discovering hidden information using few queries. Specifically, consider a game in a given set of intervals (and their implied interval graph G) in which our goal is to discover an (unknown) independent set X by making the fewest queries of the form "Is point p covered by an interval in X?" Our interest in this problem stems from two applications: experimental gene discovery with PCR technology and the game of Battleship (in a 1-dimensional setting). We provide adaptive algorithms for both the verification scenario (given an independent set, is it X?) and the discovery scenario (find X without any information). Under some assumptions, these algorithms use an asymptotically optimal number of queries in every instance.

[1]  Ramana V. Davuluri,et al.  Evaluation of gene prediction software using a genomic data set: application to <$O_SSF>Arabidopsis thaliana<$C_SSF>sequences , 1999, Bioinform..

[2]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[3]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[4]  L. Sunil Chandran,et al.  A High Girth Graph Construction and a Lower Bound for Hitting Set Size for Combinatorial Rectangles , 1999, FSTTCS.

[5]  Christos H. Papadimitriou,et al.  Searching and Pebbling , 1986, Theor. Comput. Sci..

[6]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[7]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[8]  Pavel A. Pevzner,et al.  Computational molecular biology : an algorithmic approach , 2000 .

[9]  Melanie E. Goward,et al.  The DNA sequence of human chromosome 22 , 1999, Nature.

[10]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[11]  Paul Erdös,et al.  On a Combinatorial Game , 1973, J. Comb. Theory A.

[12]  Noga Alon,et al.  An optimal procedure for gap closing in whole genome shotgun sequencing , 2001, RECOMB.

[13]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[14]  P A Pevzner,et al.  Gene hunting without sequencing genomic clones: finding exon boundaries in cDNAs. , 1998, Genomics.

[15]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[16]  V. Solovyev,et al.  Ab initio gene finding in Drosophila genomic DNA. , 2000, Genome research.

[17]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[18]  H A Erlich,et al.  Direct cloning and sequence analysis of enzymatically amplified genomic sequences. , 1986, Science.

[19]  S. Karlin,et al.  Prediction of complete gene structures in human genomic DNA. , 1997, Journal of molecular biology.

[20]  Moni Naor,et al.  Optimal aggregation algorithms for middleware , 2001, PODS '01.

[21]  Michael E. Saks,et al.  Efficient construction of a small hitting set for combinatorial rectangles in high dimension , 1993, Comb..

[22]  C. Burge,et al.  Assessment of the total number of human transcription units. , 2001, Genomics.

[23]  Dieter Kratsch,et al.  The Complexity of Coloring Games on Perfect Graphs , 1992, Theor. Comput. Sci..

[24]  Robert E. Tarjan,et al.  Network Flow and Testing Graph Connectivity , 1975, SIAM J. Comput..

[25]  Erik D. Demaine,et al.  Adaptive set intersections, unions, and differences , 2000, SODA '00.

[26]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[27]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[28]  Jeremy P. Spinrad,et al.  Construction of probe interval models , 2002, SODA '02.