Large area micropatterning of cells on polydimethylsiloxane surfaces

[1]  V. Yadavalli,et al.  Large area micropatterning of cells on polydimethylsiloxane surfaces , 2014, Journal of Biological Engineering.

[2]  L. Qin,et al.  Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design , 2013, Scientific Reports.

[3]  J. Lahann,et al.  Surface engineering the cellular microenvironment via patterning and gradients , 2013 .

[4]  Vamsi K Yadavalli,et al.  Effect of substrate stiffness on early human embryonic stem cell differentiation , 2013, Journal of Biological Engineering.

[5]  N. Yui,et al.  Adsorption state of fibronectin on poly(dimethylsiloxane) surfaces with varied stiffness can dominate adhesion density of fibroblasts. , 2013, Acta biomaterialia.

[6]  L. Simon,et al.  Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications , 2012 .

[7]  Gyu Man Kim,et al.  Micropatterning of neural stem cells and Purkinje neurons using a polydimethylsiloxane (PDMS) stencil. , 2012, Lab on a chip.

[8]  S. Takayama,et al.  Surface chemistry modification of PDMS elastomers with boiling water improves cellular adhesion , 2012 .

[9]  Minoru Seki,et al.  Micropatterning of hydrogels on locally hydrophilized regions on PDMS by stepwise solution dipping and in situ gelation. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[10]  M. Varma,et al.  Photoresist functionalisation method for high-density protein microarrays using photolithography , 2012 .

[11]  J. Lahann,et al.  Physical aspects of cell culture substrates: topography, roughness, and elasticity. , 2012, Small.

[12]  Jianping Fu,et al.  Photolithographic surface micromachining of polydimethylsiloxane (PDMS). , 2012, Lab on a chip.

[13]  Adam T Woolley,et al.  Single-monomer formulation of polymerized polyethylene glycol diacrylate as a nonadsorptive material for microfluidics. , 2011, Analytical chemistry.

[14]  Molly M Stevens,et al.  Exploring and engineering the cell surface interface. , 2011, Science.

[15]  R. Rao,et al.  Characterization of human fibroblast-derived extracellular matrix components for human pluripotent stem cell propagation. , 2010, Acta biomaterialia.

[16]  I. Choi,et al.  Generation of patterned neuronal networks on cell-repellant poly(oligo(ethylene glycol) methacrylate) films. , 2010, Chemistry, an Asian journal.

[17]  Nic D. Leipzig,et al.  The effect of substrate stiffness on adult neural stem cell behavior. , 2009, Biomaterials.

[18]  R. Carrier,et al.  Chemical and physical modifications to poly(dimethylsiloxane) surfaces affect adhesion of Caco-2 cells. , 2009, Journal of biomedical materials research. Part A.

[19]  J. E. Mark,et al.  Iop Publishing Journal of Micromechanics and Microengineering Photodefinable Pdms Thin Films for Microfabrication Applications , 2022 .

[20]  Min-Hsien Wu Simple poly(dimethylsiloxane) surface modification to control cell adhesion , 2009 .

[21]  Shinji Sugiura,et al.  Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion. , 2008, Colloids and surfaces. B, Biointerfaces.

[22]  Ian Papautsky,et al.  Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping. , 2007, Lab on a chip.

[23]  G. Whitesides,et al.  Microfabrication meets microbiology , 2007, Nature Reviews Microbiology.

[24]  Christopher S. Chen,et al.  Microcontact printing: A tool to pattern. , 2007, Soft matter.

[25]  Claire McCague,et al.  Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane). , 2007, Langmuir : the ACS journal of surfaces and colloids.

[26]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[27]  Dhananjay Bodas,et al.  Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments , 2006 .

[28]  Christian M. Puttlitz,et al.  Erratum: “Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion,and fluid environment on elastic modulus” [J. Mater.Res. 20, 2820 (2005)] , 2006 .

[29]  S. Howorka,et al.  Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[30]  A. Mata,et al.  Characterization of Polydimethylsiloxane (PDMS) Properties for Biomedical Micro/Nanosystems , 2005, Biomedical microdevices.

[31]  Mark Bachman,et al.  Covalent micropatterning of poly(dimethylsiloxane) by photografting through a mask. , 2005, Analytical chemistry.

[32]  G. Marshall,et al.  Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus , 2005 .

[33]  Joyce Y Wong,et al.  Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. , 2005, Biomaterials.

[34]  G. Whitesides,et al.  Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). , 2004, Langmuir : the ACS journal of surfaces and colloids.

[35]  David J. Odde,et al.  Micro-Patterning of Animal Cells on PDMS Substrates in the Presence of Serum without Use of Adhesion Inhibitors , 2004, Biomedical microdevices.

[36]  D. Beebe,et al.  Microenvironment design considerations for cellular scale studies. , 2004, Lab on a chip.

[37]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[38]  Mehmet Toner,et al.  Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass , 2003 .

[39]  Michael V. Pishko,et al.  Biomems Materials and Fabrication Technology: Control of Mammalian Cell and Bacteria Adhesion on Substrates Micropatterned with Poly(ethylene Glycol) Hydrogels , 2022 .

[40]  Nancy Allbritton,et al.  Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. , 2002, Analytical chemistry.

[41]  V. Yadavalli,et al.  Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. , 2001, Langmuir : the ACS journal of surfaces and colloids.

[42]  M. Dembo,et al.  Cell movement is guided by the rigidity of the substrate. , 2000, Biophysical journal.

[43]  G. Whitesides,et al.  Patterning proteins and cells using soft lithography. , 1999, Biomaterials.

[44]  Samuel Zalipsky,et al.  Poly(ethylene glycol): Chemistry and Biological Applications , 1997 .

[45]  J. Bechhoefer,et al.  Calibration of atomic‐force microscope tips , 1993 .

[46]  Robert K. Barnes,et al.  Poly(ethylene glycol) , 2014 .

[47]  Christophe Vieu,et al.  Engineering of adult human neural stem cells differentiation through surface micropatterning. , 2012, Biomaterials.

[48]  Teodor Gotszalk,et al.  Calibration of atomic force microscope , 2008 .

[49]  G. Whitesides,et al.  Soft lithography in biology and biochemistry. , 2001, Annual review of biomedical engineering.

[50]  M. Toner,et al.  Microengineering of cellular interactions. , 2000, Annual review of biomedical engineering.

[51]  Amarpreet S. Sawhney,et al.  Poly(ethylene glycol) , 1999 .

[52]  C. Decker,et al.  Photoinitiated crosslinking polymerisation , 1996 .