Cell-centered discontinuous Galerkin discretization for two-dimensional Lagrangian hydrodynamics
暂无分享,去创建一个
[1] Zhi J. Wang,et al. A Parameter-Free Generalized Moment Limiter for High-Order Methods on Unstructured Grids , 2009 .
[2] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .
[3] Chi-Wang Shu,et al. Discontinuous Galerkin Methods: General Approach and Stability , 2008 .
[4] G. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .
[5] Pierre-Henri Maire,et al. A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .
[6] R. Kidder,et al. Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .
[7] Raphaël Loubère. Une méthode particulaire lagrangienne de type Galerkin discontinu : Application à la mécanique des fluides et l'interaction laser/plasma , 2002 .
[8] Jérôme Breil,et al. Hydrodynamic instabilities in axisymmetric geometry self-similar models and numerical simulations , 2005 .
[9] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[10] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[11] Veselin Dobrev,et al. Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .
[12] Tzanio V. Kolev,et al. High-order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics , 2013 .
[13] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[14] Dmitri Kuzmin,et al. A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods , 2010, J. Comput. Appl. Math..
[15] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .
[16] Pierre-Henri Maire,et al. Contribution to the numerical modeling of Inertial Confinement Fusion , 2011 .
[17] Rémi Abgrall,et al. Cell-centered discontinuous Galerkin discretizations for two-dimensional scalar conservation laws on unstructured grids and for one-dimensional Lagrangian hydrodynamics , 2011 .