Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application

[1]  V. Lorian Antibiotics in laboratory medicine , 2005 .

[2]  R. Gallo,et al.  Antimicrobial Defense Cathelicidins for Enhanced Topical Postsecretory Processing Generates Multiple , 2004 .

[3]  M. Zanetti Cathelicidins, multifunctional peptides of the innate immunity , 2004, Journal of leukocyte biology.

[4]  A. Sette,et al.  Peptide Stability in Drug Development. II. Effect of Single Amino Acid Substitution and Glycosylation on Peptide Reactivity in Human Serum , 1993, Pharmaceutical Research.

[5]  K. Rabe,et al.  The Antimicrobial Peptide LL-37 Activates Innate Immunity at the Airway Epithelial Surface by Transactivation of the Epidermal Growth Factor Receptor 1 , 2003, The Journal of Immunology.

[6]  H. G. Boman,et al.  Antibacterial peptides: basic facts and emerging concepts , 2003, Journal of internal medicine.

[7]  J. J. Grote,et al.  Effects of Bacterial Toxins on Air-Exposed Cultured Human Respiratory Sinus Epithelium , 2003, The Annals of otology, rhinology, and laryngology.

[8]  James M. Wilson,et al.  Cathelicidins - a family of multifunctional antimicrobial peptides , 2003, Cellular and Molecular Life Sciences CMLS.

[9]  L. Rybak,et al.  Influence of pH on the ototoxicity of cisplatin: a round window application study , 2003, Hearing Research.

[10]  M. Tollin,et al.  Phylogeny, processing and expression of the rat Cathelicidin rCRAMP: a model for innate antimicrobial peptides , 2003, Cellular and Molecular Life Sciences CMLS.

[11]  Robert Bals,et al.  Antimicrobial Peptides , 2012, Drugs.

[12]  R. Hancock,et al.  The Human Antimicrobial Peptide LL-37 Is a Multifunctional Modulator of Innate Immune Responses1 , 2002, The Journal of Immunology.

[13]  I. Nagaoka,et al.  Augmentation of the Lipopolysaccharide-Neutralizing Activities of Human Cathelicidin CAP18/LL-37-Derived Antimicrobial Peptides by Replacement with Hydrophobic and Cationic Amino Acid Residues , 2002, Clinical and Vaccine Immunology.

[14]  K. Iwabuchi,et al.  A cathelicidin family of human antibacterial peptide LL‐37 induces mast cell chemotaxis , 2002, Immunology.

[15]  Ronald V. Maier,et al.  Mitogen-activated protein kinases. , 2002, Critical care medicine.

[16]  R. Hancock,et al.  Pleurocidin Coho Salmon with Lysozyme and Flounder Synergy of Histone-derived Peptides Of , 2001 .

[17]  T. Jung,et al.  Effects of common topical otic preparations on the morphology of isolated cochlear outer hair cells. , 2001, Acta oto-laryngologica.

[18]  Ji Ming Wang,et al.  Ll-37, the Neutrophil Granule–And Epithelial Cell–Derived Cathelicidin, Utilizes Formyl Peptide Receptor–Like 1 (Fprl1) as a Receptor to Chemoattract Human Peripheral Blood Neutrophils, Monocytes, and T Cells , 2000, The Journal of experimental medicine.

[19]  E. Greenberg,et al.  Bactericidal Activity of Mammalian Cathelicidin-Derived Peptides , 2000, Infection and Immunity.

[20]  M. Pichichero,et al.  Medical management of acute bacterial sinusitis. Recommendations of a clinical advisory committee on pediatric and adult sinusitis. , 2000, The Annals of otology, rhinology & laryngology. Supplement.

[21]  J. Klein,et al.  Clinical implications of antibiotic resistance for management of acute otitis media. , 1998, The Pediatric infectious disease journal.

[22]  W. Chan,et al.  Fmoc solid phase peptide synthesis : a practical approach , 2000 .

[23]  B. Skotnicka,et al.  Cytokines in children with otitis media with effusion , 2000, European Archives of Oto-Rhino-Laryngology.

[24]  C. Kauffman STATE‐OF‐THE‐ART CLINICAL ARTICLE , 1999 .

[25]  J. A. Linton,et al.  Effects of TNF-alpha and IL-1 beta on mucin, lysozyme, IL-6 and IL-8 in passage-2 normal human nasal epithelial cells. , 1999, Acta oto-laryngologica.

[26]  T. Himi,et al.  Cytokine and chemokine induction using cell wall component and toxin derived from gram-positive bacteria in the rat middle ear. , 1999, Acta oto-laryngologica.

[27]  J. J. Grote,et al.  Structural changes in the rat middle ear mucosa due to endotoxin and eustachian tube obstruction , 1999, European Archives of Oto-Rhino-Laryngology.

[28]  S. Yoshikawa,et al.  Enhancement of Antimicrobial Activity of Neuropeptide Y by N-Terminal Truncation , 1998, Antimicrobial Agents and Chemotherapy.

[29]  R. Bals,et al.  The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. McCormick Epidemiology of emerging/re-emerging antimicrobial-resistant bacterial pathogens. , 1998, Current opinion in microbiology.

[31]  R. Naclerio,et al.  Sinusitis: bench to bedside. Current findings, future directions. , 1997, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[32]  P. Hiemstra,et al.  Effect of defensins on interleukin-8 synthesis in airway epithelial cells. , 1997, The American journal of physiology.

[33]  J. Odeberg,et al.  The human gene FALL39 and processing of the cathelin precursor to the antibacterial peptide LL-37 in granulocytes. , 1996, European journal of biochemistry.

[34]  J. Larrick,et al.  Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein , 1995, Infection and immunity.

[35]  G. Gates,et al.  Ototoxicity of topical otomicrobial agents. , 1995, Acta oto-laryngologica.

[36]  H. Schluesener,et al.  Leukocytic antimicrobial peptides kill autoimmune T cells , 1993, Journal of Neuroimmunology.

[37]  T. Olsson,et al.  Assessment of the inhibitory effect of immunosuppressive agents on rat T cell interferon-gamma production using an ELISPOT assay. , 1991, Journal of immunological methods.

[38]  E. Wald,et al.  Upper respiratory tract infections in young children: duration of and frequency of complications. , 1991, Pediatrics.

[39]  Y. Nakai,et al.  Experimental otitis media with effusion induced by lipopolysaccharide from Klebsiella pneumoniae. Mucociliary pathology of the eustachian tube. , 1991, Acta oto-laryngologica. Supplementum.

[40]  G. Fields,et al.  Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. , 2009, International journal of peptide and protein research.

[41]  Garland R. Marshall,et al.  Peptides: Chemistry, Structure and Biology , 1990 .

[42]  L. Koenderman,et al.  An Improved Method for the Isolation of Eosinophilic Granulocytes From Peripheral Blood of Normal Individuals , 1988, Journal of leukocyte biology.

[43]  V. Lee Enzymatic barriers to peptide and protein absorption. , 1988, Critical reviews in therapeutic drug carrier systems.

[44]  L. Reimer,et al.  Antibiotics in laboratory medicine , 1987 .

[45]  B. Merrifield,et al.  Solid phase synthesis , 1985, Science.

[46]  R. Sheppard,et al.  Acid-labile resin linkage agents for use in solid phase peptide synthesis. , 2009, International journal of peptide and protein research.

[47]  R. Wade Peptides: Chemistry, structure and biology , 1977 .

[48]  D. Storm,et al.  Polymyxin and related peptide antibiotics. , 1977, Annual review of biochemistry.