Target Tracking Analysis for Stone Soup

The International Society of Information Fusion (ISIF) Stone Soup project seeks to bring together advances in target tracking through an open-source repository of software libraries. Additionally, the ISIF uncertainty reasoning working group provides an open-source ontology. This paper seeks to demonstrate the correspondence between the open source tracking repository and the Uncertainty Representation and Reasoning Evaluation Framework (URREF) ontology. For example, many target tracking challenge problems propose a scenario for data fusion techniques to solve, from which various performance metrics are considered for evaluation. The Stone Soup framework has the MetricGenerator class and the URREF has the accuracy class. The example presented in the paper utilizes the cubature Kalman filter to determine the impact of corrupted measurements on the track accuracy as an instance of the Stone Soup and URREF metrics.

[1]  Erik Blasch,et al.  Ontologies for nextgen avionics systems , 2015, 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC).

[2]  Kannappan Palaniappan,et al.  Contemporary concerns in Geographical/Geospatial Information Systems (GIS) processing , 2011, Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON).

[3]  David Frederic Crouse Cubature Kalman filters for continuous-time dynamic models Part I: Solutions discretizing the Langevin equation , 2014, 2014 IEEE Radar Conference.

[4]  David Frederic Crouse,et al.  The tracker component library: free routines for rapid prototyping , 2017, IEEE Aerospace and Electronic Systems Magazine.

[5]  Johan Pieter de Villiers,et al.  Application of URREF Criteria to Assess Knowledge Representation in Cyber Threat Models , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[6]  A.S. Paul,et al.  Sigma-point Kalman smoothing : algorithms and analysis with applications to indoor tracking. , 2010 .

[7]  Erik Blasch,et al.  Multiple sensor estimation using a high-degree cubature information filter , 2013, Defense, Security, and Sensing.

[8]  Li Bai,et al.  Evaluation of visual tracking in extremely low frame rate wide area motion imagery , 2011, 14th International Conference on Information Fusion.

[9]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[10]  Erik Blasch,et al.  Handbook of Dynamic Data Driven Applications Systems , 2018, Springer International Publishing.

[11]  David Frederic Crouse,et al.  On measurement-based light-time corrections for bistatic orbital debris tracking , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[12]  Ondrej Straka,et al.  Stochastic Integration Filter , 2013, IEEE Transactions on Automatic Control.

[13]  Mamoon Rashid,et al.  Stone Soup: announcement of beta release of an open-source framework for tracking and state estimation , 2019, Defense + Commercial Sensing.

[14]  David Crouse,et al.  Basic tracking using nonlinear continuous-time dynamic models [Tutorial] , 2015, IEEE Aerospace and Electronic Systems Magazine.

[15]  Zhonghai Wang,et al.  Space object tracking and maneuver detection via interacting multiple model cubature Kalman filters , 2015, 2015 IEEE Aerospace Conference.

[16]  Erik Blasch,et al.  Nonlinear estimation framework in target tracking , 2010, 2010 13th International Conference on Information Fusion.

[17]  Johan Pieter de Villiers,et al.  Towards the Rational Development and Evaluation of Complex Fusion Systems: A URREF-Driven Approach , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[18]  Erik Blasch,et al.  Evaluation metrics for the practical application of URREF ontology: An illustration on data criteria , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[19]  Erik Blasch,et al.  Random-point-based filters: analysis and comparison in target tracking , 2015, IEEE Transactions on Aerospace and Electronic Systems.

[20]  Erik Blasch,et al.  A multilevel homotopy MCMC sequential Monte Carlo filter for multi-target tracking , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[21]  Genshe Chen,et al.  Cooperative space object tracking using space-based optical sensors via consensus-based filters , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Genshe Chen,et al.  Wide-area motion imagery (WAMI) exploitation tools for enhanced situation awareness , 2012, 2012 IEEE Applied Imagery Pattern Recognition Workshop (AIPR).

[23]  Kazufumi Ito,et al.  Gaussian filters for nonlinear filtering problems , 2000, IEEE Trans. Autom. Control..

[24]  Erik Blasch,et al.  Sensor, User, Mission (SUM) Resource Management and Their Interaction with Level 2/3 Fusion , 2006, 2006 9th International Conference on Information Fusion.

[25]  Erik Blasch,et al.  Recent Trends in Context Exploitation for Information Fusion and AI , 2019, AI Mag..

[26]  Yang Cheng,et al.  Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .

[27]  Erik Blasch,et al.  URREF for veracity assessment in query-based information fusion systems , 2015, 2015 18th International Conference on Information Fusion (Fusion).

[28]  Yaakov Bar-Shalom,et al.  A generalized information matrix fusion based heterogeneous track-to-track fusion algorithm , 2011, Defense + Commercial Sensing.

[29]  Erik Blasch,et al.  Diffusion-based cooperative space object tracking , 2019 .

[30]  Erik Blasch,et al.  Subjects under evaluation with the URREF ontology , 2017, 2017 20th International Conference on Information Fusion (Fusion).

[31]  Erik Blasch,et al.  Entropy-Based Metrics for URREF Criteria to Assess Uncertainty in Bayesian Networks for Cyber Threat Detection , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[32]  Erik P. Blasch,et al.  Fusion metrics for dynamic situation analysis , 2004, SPIE Defense + Commercial Sensing.

[33]  Audun Jøsang,et al.  URREF self-confidence in information fusion trust , 2014, 17th International Conference on Information Fusion (FUSION).

[34]  David L. Hall,et al.  Assessing the Performance of Multisensor Fusion Processes , 2001 .

[35]  Yu Chen,et al.  Test and evaluation needs of multi-domain autonomous systems , 2020 .

[36]  Ondřej Straka,et al.  A Software Framework and Tool for Nonlinear State Estimation , 2009 .

[37]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[38]  W. D. Blair,et al.  Benchmark Problem for Radar Resource Allocation and Tracking Maneuvering Targets in the Presence of ECM , 1996 .

[39]  Ming Xin,et al.  Sparse-grid quadrature nonlinear filtering , 2012, Autom..

[40]  David Frederic Crouse,et al.  Cubature Kalman filters for continuous-time dynamic models Part II: A solution based on moment matching , 2014, 2014 IEEE Radar Conference.

[41]  Erik Blasch,et al.  Data association through fusion of target track and identification sets , 2000, Proceedings of the Third International Conference on Information Fusion.

[42]  Ángel F. García-Fernández,et al.  Generalized optimal sub-pattern assignment metric , 2016, 2017 20th International Conference on Information Fusion (Fusion).

[43]  Erik Blasch,et al.  Track purity and current assignment ratio for target tracking and identification evaluation , 2011, 14th International Conference on Information Fusion.

[44]  Erik Blasch,et al.  Ontological knowledge representation for avionics decision-making support , 2016, 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC).

[45]  Ondrej Straka,et al.  Multitarget tracking performance analysis using the non-credibility index in the Nonlinear Estimation Framework (NEF) toolbox , 2010, Proceedings of the IEEE 2010 National Aerospace & Electronics Conference.

[46]  James Llinas Assessing the Performance of Multisensor Fusion Processes , 2001 .

[47]  Erik Blasch,et al.  Airplane flight safety using error-tolerant data stream processing , 2017, IEEE Aerospace and Electronic Systems Magazine.

[48]  Erik Blasch,et al.  Covariance Estimation and Gaussianity Assessment for State and Measurement Noise , 2020 .

[49]  Simon Haykin,et al.  Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations , 2010, IEEE Transactions on Signal Processing.

[50]  Ruixin Niu,et al.  False information injection attack on dynamic state estimation in multi-sensor systems , 2014, 17th International Conference on Information Fusion (FUSION).

[51]  Erik Blasch,et al.  Investigation of the dynamic enhanced cubature Kalman filter , 2018, Defense + Security.

[52]  Chun Yang,et al.  Relative Track Metrics to Determine Model Mismatch , 2008, 2008 IEEE National Aerospace and Electronics Conference.

[53]  Paul A. Thomas,et al.  An open source framework for tracking and state estimation ('Stone Soup') , 2017, Defense + Security.

[54]  James Llinas,et al.  Design of a performance evaluation methodology for data-fusion-based multiple target tracking systems , 2003, SPIE Defense + Commercial Sensing.

[55]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[56]  W. Dale Blair,et al.  A MIMO radar benchmarking environment , 2011, 2011 Aerospace Conference.

[57]  Erik Blasch,et al.  Veracity metrics for ontologica! Decision-making support in avionics analytics , 2017, 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC).

[58]  Erik Blasch,et al.  Context-Enhanced Information Fusion: Boosting Real-World Performance with Domain Knowledge , 2016 .

[59]  Erik Blasch,et al.  Three-dimensional receiver operating characteristic (ROC) trajectory concepts for the evaluation of target recognition algorithms faced with the unknown target detection problem , 1999, Defense, Security, and Sensing.

[60]  Erik Blasch,et al.  Revisiting the JDL model for information exploitation , 2013, Proceedings of the 16th International Conference on Information Fusion.

[61]  Zheng Liu,et al.  Multispectral Image Fusion and Colorization , 2018 .

[62]  Erik Blasch,et al.  Towards unbiased evaluation of uncertainty reasoning: The URREF ontology , 2012, 2012 15th International Conference on Information Fusion.

[63]  Ruixin Niu,et al.  Ballistic Trajectory Estimation Using Polynomial Chaos Based Square Root Ensemble Filter , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[64]  S. Mori,et al.  Tracking Performance Evaluation - Prediction Of Track Purity , 1989, Defense, Security, and Sensing.

[65]  Johan Pieter de Villiers,et al.  A URREF interpretation of Bayesian network information fusion , 2014, 17th International Conference on Information Fusion (FUSION).

[66]  J. Duník,et al.  Solution Separation Unscented Kalman Filter , 2019, 2019 22th International Conference on Information Fusion (FUSION).

[67]  H. Musoff,et al.  Unscented Kalman Filter , 2015 .

[68]  Erik Blasch,et al.  URREF reliability versus credibility in information fusion (STANAG 2511) , 2013, Proceedings of the 16th International Conference on Information Fusion.

[69]  Di Qiu,et al.  Ground target track bias estimation using opportunistic road information , 2010, Proceedings of the IEEE 2010 National Aerospace & Electronics Conference.