Investigation of conductivity and shielding efficiency of the free-standing PVA–GO–Ag composite thin films in terahertz regime using time-domain terahertz spectroscopy

[1]  A. L. Waly,et al.  A comparison of silver nanoparticles made by green chemistry and femtosecond laser ablation and injected into a PVP/PVA/chitosan polymer blend , 2022, Journal of Materials Science: Materials in Electronics.

[2]  Tingkai Zhao,et al.  Solvothermal synthesis and enhancement of microstructural and magnetic properties of G-AgFe3O4 nanocomposites , 2022, Materials Research Innovations.

[3]  Q. Wen,et al.  Substrate-Independent Ti3C2Tx MXene Waterborne Paint for Terahertz Absorption and Shielding. , 2021, ACS nano.

[4]  N. Kamaraju,et al.  A review on numerical methods for thickness determination in terahertz time-domain spectroscopy , 2021, The European Physical Journal Special Topics.

[5]  W. Shi,et al.  Enhanced terahertz shielding by adding rare Ag nanoparticles to Ti3C2T x MXene fiber membranes , 2021, Nanotechnology.

[6]  C. Brosseau,et al.  Terahertz Shielding Properties of Carbon Black Based Polymer Nanocomposites , 2021, Materials.

[7]  Hongwei Zhu,et al.  Recent progress in two-dimensional materials for terahertz protection , 2021, Nanoscale advances.

[8]  F. Liu,et al.  MXene-based ultra-thin film for terahertz radiation shielding , 2020, Nanotechnology.

[9]  M. Bonn,et al.  The Drude-Smith Model for Conductivity: de novo Derivation and Interpretation , 2020, 2008.07913.

[10]  F. Ezema,et al.  Effect of calcination on the microstructural and magnetic properties of PVA, PVP and PEG assisted zinc ferrite nanoparticles , 2020 .

[11]  J. Iqbal,et al.  A unique ZnFe2O4/graphene nanoplatelets nanocomposite for electrochemical energy storage and efficient visible light driven catalysis for the degradation of organic noxious in wastewater , 2020, Journal of Physics and Chemistry of Solids.

[12]  K. Tominaga,et al.  Temperature Dependence of THz Conductivity in Polyaniline Emeraldine Salt-Polyethylene Pellets , 2020 .

[13]  V. Mochalin,et al.  Dynamical control over terahertz electromagnetic interference shielding with 2D Ti3C2Ty MXene by ultrafast optical pulses. , 2019, Nano letters.

[14]  B. Karthikeyan Optical, phonon and fluorescence properties of PVA-GO-ZnO free standing films , 2019, Applied Physics A.

[15]  Xuequan Chen,et al.  A Sensitive and Versatile Thickness Determination Method Based on Non-Inflection Terahertz Property Fitting , 2019, Sensors.

[16]  A. Abdelghany,et al.  AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs , 2019, Journal of Materials Science: Materials in Electronics.

[17]  A. Nada,et al.  Anomalous dielectric constant value of graphene oxide/Polyvinyl alcohol thin film , 2019, Solid State Sciences.

[18]  V. Shukla Review of electromagnetic interference shielding materials fabricated by iron ingredients , 2019, Nanoscale advances.

[19]  T. Higo,et al.  Terahertz conductivity of the magnetic Weyl semimetal Mn3Sn films , 2019, Applied Physics Letters.

[20]  Jun Pyo Hong,et al.  Polymer-Based EMI Shielding Materials , 2018, Advanced Materials for Electromagnetic Shielding.

[21]  Lili Jiang,et al.  Flexible reduced graphene oxide paper with excellent electromagnetic interference shielding for terahertz wave , 2018, Journal of Materials Science: Materials in Electronics.

[22]  Yusliza Yusof,et al.  The tunable permittivity of multi-walled carbon nanotubes/silver nanoparticles reinforced polyvinyl alcohol (PVA) nanocomposites at low frequency , 2018, Materials Research Express.

[23]  J. Baselga,et al.  Electromagnetic Shielding Materials in GHz Range. , 2018, Chemical record.

[24]  Fei Fan,et al.  Terahertz wave modulation enhanced by laser processed PVA film on Si substrate , 2018, Scientific Reports.

[25]  F. Hegmann,et al.  Microscopic origin of the Drude-Smith model , 2017, 1705.10350.

[26]  M. Wainwright,et al.  Electrodynamics of the conducting polymer polyaniline on the insulating side of the metal-insulator transition , 2017 .

[27]  H. Jeong,et al.  Electrochemical properties of poly(vinyl alcohol) and graphene oxide composite for supercapacitor applications , 2017 .

[28]  Arnab Halder,et al.  Temperature-Dependent Conductivity of Graphene Oxide and Graphene Oxide-Polyaniline Nanocomposites Studied by Terahertz Time-Domain Spectroscopy , 2017 .

[29]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[30]  Wang Fang,et al.  Mechanical Properties of Graphene Oxide/Polyvinyl Alcohol Composite Film , 2017 .

[31]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[32]  S. Saxena,et al.  Graphene oxide – Polyvinyl alcohol nanocomposite based electrode material for supercapacitors , 2016 .

[33]  P. Jha,et al.  Synthesis and Characterization of PVA/GO Nanocomposite Films , 2015 .

[34]  E. Pickwell‐MacPherson,et al.  Solvent Doping of PEDOT/PSS: Effect on Terahertz Optoelectronic Properties and Utilization in Terahertz Devices , 2015 .

[35]  R. K. Mitra,et al.  Controllable terahertz conductivity in single walled carbon nanotube/polymer composites , 2015 .

[36]  D. Fernig,et al.  A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. , 2014, The Analyst.

[37]  C. Megaridis,et al.  Terahertz shielding of carbon nanomaterials and their composites – A review and applications , 2014 .

[38]  R. K. Mitra,et al.  EMI shielding and conductivity of carbon nanotube-polymer composites at terahertz frequency. , 2014, Optics letters.

[39]  Chan-Shan Yang,et al.  Broadband terahertz conductivity and optical transmission of indium-tin-oxide (ITO) nanomaterials. , 2013, Optics express.

[40]  S. Kumar,et al.  Tuning of refractive index of poly(vinyl alcohol): Effect of embedding Cu and Ag nanoparticles , 2013 .

[41]  K. Tominaga,et al.  Conduction properties in polyaniline-polyethylene composites in the terahertz region , 2012, 2012 37th International Conference on Infrared, Millimeter, and Terahertz Waves.

[42]  Jingshan Luo,et al.  Temperature-dependent terahertz conductivity of tin oxide nanowire films , 2012 .

[43]  T. Nishino,et al.  Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process , 2012 .

[44]  P. Saini,et al.  Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes , 2012 .

[45]  J. Lloyd‐Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012, Journal of Infrared, Millimeter, and Terahertz Waves.

[46]  James Lloyd-Hughes,et al.  A Review of the Terahertz Conductivity of Bulk and Nano-Materials , 2012 .

[47]  Masayoshi Tonouchi,et al.  Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. , 2012, Nano letters.

[48]  A. Sylvestre,et al.  Experimental and theoretical study of AC electrical conduction mechanisms of semicrystalline parylene C thin films. , 2012, The journal of physical chemistry. A.

[49]  Ci-Ling Pan,et al.  An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial , 2011 .

[50]  B. Sung,et al.  Effects of silica particles on the electrical percolation threshold and thermomechanical properties of epoxy/silver nanocomposites , 2011 .

[51]  Martin Koch,et al.  Terahertz lenses made by compression molding of micropowders. , 2011, Applied optics.

[52]  Tadao Nagatsuma,et al.  A Review on Terahertz Communications Research , 2011 .

[53]  M. Koch,et al.  Terahertz spectroscopy and imaging – Modern techniques and applications , 2011 .

[54]  H. Bandulet,et al.  Terahertz conductivity of the metal-insulator transition in a nanogranular VO2 film , 2010 .

[55]  S. Kumar,et al.  Electrical conductivity and dielectric spectroscopic studies of PVA–Ag nanocomposite films , 2010 .

[56]  Sunil Kumar,et al.  Terahertz Spectroscopy of Single-Walled Carbon Nanotubes in a Polymer Film: Observation of Low-Frequency Phonons , 2010 .

[57]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[58]  Daniel M. Mittleman,et al.  Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies , 2010 .

[59]  Daru Chen,et al.  A novel low-loss Terahertz waveguide: polymer tube. , 2010, Optics express.

[60]  M. Koch,et al.  Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy , 2009 .

[61]  V. Sundström,et al.  Far-infrared response of free charge carriers localized in semiconductor nanoparticles , 2009 .

[62]  C. Budd,et al.  The robustness of the emergent scaling property of random RC network models of complex materials , 2009 .

[63]  M. R. Freeman,et al.  Terahertz conductivity of thin gold films at the metal-insulator percolation transition , 2007 .

[64]  Yongsheng Chen,et al.  Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites , 2007 .

[65]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[66]  M. Anija,et al.  In situ synthesis and nonlinear optical properties of Au:Ag nanocomposite polymer films , 2006 .

[67]  Christopher R. Bowen,et al.  The Frequency Dependent Permittivity and AC Conductivity of Random Electrical Networks , 2005 .

[68]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[69]  Colette Lacabanne,et al.  DC and AC conductivity of carbon nanotubes-polyepoxy composites , 2003 .

[70]  Abha Sharma,et al.  Electrical and optical properties of pure and silver nitrate-doped polyvinyl alcohol films , 2002 .

[71]  Martin Dressel,et al.  Electrodynamics of Solids: Optical Properties of Electrons in Matter , 2002 .

[72]  N. V. Smith,et al.  Classical generalization of the Drude formula for the optical conductivity , 2001 .

[73]  Darryl P Almond,et al.  An evaluation of random R-C networks for modelling the bulk ac electrical response of ionic conductors , 1999 .

[74]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .

[75]  J. Coutaz,et al.  Highly precise determination of optical constants and sample thickness in terahertz time-domain spectroscopy. , 1999, Applied optics.

[76]  J. Coutaz,et al.  A reliable method for extraction of material parameters in terahertz time-domain spectroscopy , 1996 .

[77]  Arthur J. Epstein,et al.  Electromagnetic radiation shielding by intrinsically conducting polymers , 1994 .

[78]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.

[79]  A. Jonscher Alternating current diagnostics of poorly conducting thin films , 1976 .

[80]  Sabih D. Khan,et al.  Investigation of optical and dielectric properties of polyvinyl chloride and polystyrene blends in terahertz regime , 2020 .

[81]  A. Abdelghany,et al.  Characterization and some physical studies of PVA/PVP filled with MWCNTs , 2019, Journal of Materials Research and Technology.

[82]  Z. A. Raza,et al.  Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films , 2018, Polymer Bulletin.

[83]  Yongsheng Chen,et al.  Ultra‐Broadband Wide‐Angle Terahertz Absorption Properties of 3D Graphene Foam , 2018 .

[84]  D. Sastikumar,et al.  Optical, phonon properties of ZnO–PVA, ZnO–GO–PVA nanocomposite free standing polymer films for UV sensing , 2017, Journal of Materials Science: Materials in Electronics.

[85]  T. P. Radhakrishnan,et al.  Nanoparticle-Embedded Polymer: In Situ Synthesis, Free-Standing Films with Highly Monodisperse Silver Nanoparticles and Optical Limiting , 2005 .

[86]  C. Cramer,et al.  Complete conductivity spectra of fast ion conducting silver iodide/silver selenate glasses , 1998 .