Time minimal trajectories for two-level quantum systems with two bounded controls

In this paper we consider the minimum time population transfer problem for a two level quantum system driven by two external fields with bounded amplitude. After projection on the so-called Bloch sphere, we tackle the problem with well-developed techniques of optimal synthesis on 2-D manifolds. Based on the Pontryagin Maximum Principle, we characterize a restricted set of candidate optimal trajectories. Properties on this set, crucial for a complete optimal synthesis, are illustrated by numerical simulations.

[1]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[3]  Dominique Sugny,et al.  Towards the time-optimal control of dissipative spin-1/2 particles in nuclear magnetic resonance , 2011 .

[4]  U. Boscain,et al.  Time minimal trajectories for a spin 1∕2 particle in a magnetic field , 2005, quant-ph/0512074.

[5]  Bernard Bonnard,et al.  Optimal control with applications in space and quantum dynamics , 2012 .

[6]  H. Sussmann The Structure of Time-Optimal Trajectories for Single-Input Systems in the Plane: the C , 1987 .

[7]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[8]  R. Harney,et al.  Optical resonance and two-level atoms , 1978, IEEE Journal of Quantum Electronics.

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[11]  U. Boscain,et al.  NONISOTROPIC 3-LEVEL QUANTUM SYSTEMS: COMPLETE SOLUTIONS FOR MINIMUM TIME AND MINIMUM ENERGY , 2004, quant-ph/0409022.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[14]  Héctor J. Sussmann,et al.  Regular synthesis for time-optimal control of single-input real analytic systems in the plane , 1987 .

[15]  Héctor J. Sussmann,et al.  Regular Synthesis and Sufficiency Conditions for Optimality , 2000, SIAM J. Control. Optim..

[16]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[17]  Alberto Bressan,et al.  The generic local time-optimal stabilizing controls in dimension 3 , 1986 .