Viviparity imparts a macroevolutionary signature of ecological opportunity in the body size of female Liolaemus lizards

[1]  L. Pellissier,et al.  Elevational Goldilocks zone underlies the exceptional diversity of a large lizard radiation (Liolaemus; Liolaemidae). , 2023, Evolution; international journal of organic evolution.

[2]  E. Burress,et al.  Phenotypic rate and state are decoupled in response to river-to-lake transitions in cichlid fishes. , 2023, Evolution; international journal of organic evolution.

[3]  R. Tingley,et al.  A global analysis of viviparity in squamates highlights its prevalence in cold climates , 2022, Global Ecology and Biogeography.

[4]  M. Symonds,et al.  Thermal adaptation best explains Bergmann’s and Allen’s Rules across ecologically diverse shorebirds , 2022, Nature Communications.

[5]  F. B. Cruz,et al.  The role of climate and maternal manipulation in determining and maintaining reproductive mode in Liolaemus lizards , 2022, Journal of Zoology.

[6]  Matthew W. Pennell,et al.  Maternal investment evolves with larger body size and higher diversification rate in sharks and rays , 2022, Current Biology.

[7]  M. Gouy,et al.  A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the Archaea , 2022, BMC ecology and evolution.

[8]  L. Revell,et al.  Early giant reveals faster evolution of large body size in ichthyosaurs than in cetaceans , 2021, Science.

[9]  C. Whittington Evolution of lizard viviparity , 2021, Nature Ecology & Evolution.

[10]  B. Sinervo,et al.  Looking at the past to infer into the future: Thermal traits track environmental change in Liolaemidae* , 2021, Evolution; international journal of organic evolution.

[11]  L. Boschman,et al.  Mountain radiations are not only rapid and recent: Ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations , 2021, bioRxiv.

[12]  L. Boschman Andean mountain building since the Late Cretaceous: A paleoelevation reconstruction , 2021 .

[13]  J. Cerdeña,et al.  A high mountain lizard from Peru: The world’s highest-altitude reptile , 2021 .

[14]  H. Gadsden,et al.  Exceptional parallelisms characterize the evolutionary transition to live birth in phrynosomatid lizards , 2021, Nature Communications.

[15]  R. Hudson,et al.  Living on the edge: Lower thermal quality but greater survival probability at a high altitude mountain for the mesquite lizard (Sceloporus grammicus). , 2020, Journal of thermal biology.

[16]  James H. Brown,et al.  Toward a metabolic theory of life history , 2019, Proceedings of the National Academy of Sciences.

[17]  Y. Buckley,et al.  Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction , 2019, Nature Ecology & Evolution.

[18]  M. R. May,et al.  A Bayesian Approach for Inferring the Impact of a Discrete Character on Rates of Continuous-Character Evolution in the Presence of Background-Rate Variation , 2019, bioRxiv.

[19]  F. B. Cruz,et al.  Sexual size dimorphism, allometry and fecundity in a lineage of South American viviparous lizards (Liolaemidae: Phymaturus) , 2019, Zoologischer Anzeiger.

[20]  Renee A. Catullo,et al.  How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America's most species‐rich lizard radiation (Squamata: Liolaemidae) , 2018, Evolution; international journal of organic evolution.

[21]  Mariana Morando,et al.  Evidence of body size and shape stasis driven by selection in Patagonian lizards of the Phymaturus patagonicus clade (Squamata: Liolaemini). , 2018, Molecular phylogenetics and evolution.

[22]  A. Feldman,et al.  Cold and isolated ectotherms: drivers of reptilian longevity , 2018, Biological Journal of the Linnean Society.

[23]  R. Huey,et al.  A global test of the cold‐climate hypothesis for the evolution of viviparity of squamate reptiles , 2018 .

[24]  T. Tregenza,et al.  Sexes and species as rival units of niche saturation during community assembly , 2018 .

[25]  J. Losos,et al.  Thermoregulatory Behavior Simultaneously Promotes and Forestalls Evolution in a Tropical Lizard , 2018, The American Naturalist.

[26]  T. Quental,et al.  Arboreality constrains morphological evolution but not species diversification in vipers , 2017, Proceedings of the Royal Society B: Biological Sciences.

[27]  W. van der Bijl phylopath: Easy phylogenetic path analysis in R , 2017, bioRxiv.

[28]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[29]  J. Mallet,et al.  North Andean origin and diversification of the largest ithomiine butterfly genus , 2017, Scientific Reports.

[30]  Alexander S. T. Papadopulos,et al.  Viviparity stimulates diversification in an order of fish , 2016, Nature Communications.

[31]  Lilly P. Harvey,et al.  What defines an adaptive radiation? Macroevolutionary diversification dynamics of an exceptionally species-rich continental lizard radiation , 2015, BMC Evolutionary Biology.

[32]  Daniel G. Blackburn Evolution of vertebrate viviparity and specializations for fetal nutrition: A quantitative and qualitative analysis , 2015, Journal of morphology.

[33]  M. Donoghue,et al.  Confluence, synnovation, and depauperons in plant diversification. , 2015, The New phytologist.

[34]  A. Cree,et al.  Adherence to Bergmann’s rule by lizards may depend on thermoregulatory mode: support from a nocturnal gecko , 2015, Oecologia.

[35]  G. Moreno-Rueda,et al.  Bergmann's Rule rules body size in an ectotherm: heat conservation in a lizard along a 2200‐metre elevational gradient , 2014, Journal of evolutionary biology.

[36]  A. Algar,et al.  Untangling Intra- and Interspecific Effects on Body Size Clines Reveals Divergent Processes Structuring Convergent Patterns in Anolis Lizards , 2014, The American Naturalist.

[37]  R. Shine Evolution of an Evolutionary Hypothesis: A History of Changing Ideas about the Adaptive Significance of Viviparity in Reptiles , 2014 .

[38]  J. Wiens,et al.  EVOLUTION OF VIVIPARITY: A PHYLOGENETIC TEST OF THE COLD‐CLIMATE HYPOTHESIS IN PHRYNOSOMATID LIZARDS , 2013, Evolution; international journal of organic evolution.

[39]  P. Turnbaugh,et al.  Exceptional Convergence on the Macroevolutionary Landscape in Island Lizard Radiations , 2013, Science.

[40]  T. Tregenza,et al.  The evolution of viviparity opens opportunities for lizard radiation but drives it into a climatic cul‐de‐sac , 2013 .

[41]  F. B. Cruz,et al.  Sexual size dimorphism and allometry in Liolaemus of the L. laurenti group (Sauria: Liolaemidae): Morphologic lability in a clade of lizards with different reproductive modes , 2013 .

[42]  A. Hardenberg,et al.  DISENTANGLING EVOLUTIONARY CAUSE‐EFFECT RELATIONSHIPS WITH PHYLOGENETIC CONFIRMATORY PATH ANALYSIS , 2013, Evolution; international journal of organic evolution.

[43]  W. Salzburger,et al.  How Cichlids Diversify , 2012, Science.

[44]  B. O’Meara,et al.  MODELING STABILIZING SELECTION: EXPANDING THE ORNSTEIN–UHLENBECK MODEL OF ADAPTIVE EVOLUTION , 2012, Evolution; international journal of organic evolution.

[45]  J. D. Díaz Gómez Estimating Ancestral Ranges: Testing Methods with a Clade of Neotropical Lizards (Iguania: Liolaemidae) , 2011, PloS one.

[46]  J. Losos,et al.  EVOLUTION OF EXTREME BODY SIZE DISPARITY IN MONITOR LIZARDS (VARANUS) , 2011, Evolution; international journal of organic evolution.

[47]  T. Tregenza,et al.  Fecundity Selection and the Evolution of Reproductive Output and Sex-Specific Body Size in the Liolaemus Lizard Adaptive Radiation , 2011, Evolutionary Biology.

[48]  David R. Anderson,et al.  AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons , 2011, Behavioral Ecology and Sociobiology.

[49]  N. Ibargüengoytía,et al.  How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus , 2010 .

[50]  W. Godsoe,et al.  Ecological opportunity and the origin of adaptive radiations , 2010, Journal of evolutionary biology.

[51]  J. Losos,et al.  Adaptive Radiation: Contrasting Theory with Data , 2009, Science.

[52]  Shai Meiri Evolution and ecology of lizard body sizes , 2008 .

[53]  J. Losos,et al.  The role of geography and ecological opportunity in the diversification of day geckos (Phelsuma). , 2008, Systematic biology.

[54]  D. Adams,et al.  Amphibians Do Not Follow Bergmann's Rule , 2008, Evolution; international journal of organic evolution.

[55]  T. Tregenza,et al.  Body size evolution in South American Liolaemus lizards of the boulengeri clade: a contrasting reassessment , 2007, Journal of evolutionary biology.

[56]  W. Jetz,et al.  Insularity and the determinants of lizard population density. , 2007, Ecology letters.

[57]  Ole Seehausen,et al.  African cichlid fish: a model system in adaptive radiation research , 2006, Proceedings of the Royal Society B: Biological Sciences.

[58]  R. Eastwood,et al.  Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes , 2006, Proceedings of the National Academy of Sciences.

[59]  Lee FitzGerald,et al.  The importance of phylogenetic scale in tests of Bergmann's and Rapoport's rules: lessons from a clade of South American lizards , 2005, Journal of evolutionary biology.

[60]  C. Labandeira,et al.  Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  C. Tracy,et al.  Recurrent evolution of herbivory in small, cold-climate lizards: breaking the ecophysiological rules of reptilian herbivory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  K. G. Ashton Do amphibians follow Bergmann's rule? , 2002 .

[63]  M. C. Tracy,et al.  Is Bergmann’s Rule Valid for Mammals? , 2000, The American Naturalist.

[64]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[65]  Timothy A Mousseau ECTOTHERMS FOLLOW THE CONVERSE TO BERGMANN'S RULE , 1997, Evolution; international journal of organic evolution.

[66]  R. Shine A New Hypothesis for the Evolution of Viviparity in Reptiles , 1995, The American Naturalist.

[67]  V. French,et al.  EVOLUTION AND DEVELOPMENT OF BODY SIZE AND CELL SIZE IN DROSOPHILA MELANOGASTER IN RESPONSE TO TEMPERATURE , 1994, Evolution; international journal of organic evolution.

[68]  S. J. Arnold,et al.  Hot Rocks and Not-So-Hot Rocks: Retreat-Site Selection by Garter Snakes and Its Thermal Consequences , 1989 .

[69]  C. Beuchat Temperature effects during gestation in a viviparous lizard , 1988 .

[70]  Dolph Schluter,et al.  The Evolution of Finch Communities on Islands and Continents: Kenya vs. Galapagos , 1988 .

[71]  C. Beuchat Reproductive influences on the thermoregulatory behavior of a live-bearing lizard , 1986 .

[72]  Carleton Ray The application of Bergmann's and Allen's rules to the poikilotherms , 1960 .

[73]  R. A. Pyron,et al.  Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. , 2014, Ecology letters.

[74]  A. Scolaro,et al.  Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina , 2010 .

[75]  M. Angilletta Thermal Adaptation: A Theoretical and Empirical Synthesis , 2009 .

[76]  J. Gomez Historical biogeography of Phymaturus (Iguania: Liolaemidae) from Andean and patagonian South America , 2009 .

[77]  T. Tregenza,et al.  Bmc Evolutionary Biology the Evolution of Body Size under Environmental Gradients in Ectotherms: Why Should Bergmann's Rule Apply to Lizards? , 2022 .

[78]  K. Robert,et al.  Sex determination: Viviparous lizard selects sex of embryos , 2001, Nature.

[79]  J. Macey,et al.  Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal , 2000 .