Strong consistency of nonparametric Bayes density estimation on compact metric spaces with applications to specific manifolds

This article considers a broad class of kernel mixture density models on compact metric spaces and manifolds. Following a Bayesian approach with a nonparametric prior on the location mixing distribution, sufficient conditions are obtained on the kernel, prior and the underlying space for strong posterior consistency at any continuous density. The prior is also allowed to depend on the sample size n and sufficient conditions are obtained for weak and strong consistency. These conditions are verified on compact Euclidean spaces using multivariate Gaussian kernels, on the hypersphere using a von Mises-Fisher kernel and on the planar shape space using complex Watson kernels.

[1]  K. P. Lennox,et al.  Density Estimation for Protein Conformation Angles Using a Bivariate von Mises Distribution and Bayesian Nonparametrics , 2009, Journal of the American Statistical Association.

[2]  R. Bhattacharya,et al.  Large sample theory of intrinsic and extrinsic sample means on manifolds--II , 2005, math/0507423.

[3]  L. Lecam Convergence of Estimates Under Dimensionality Restrictions , 1973 .

[4]  Anuj Srivastava,et al.  Statistical Shape Analysis , 2014, Computer Vision, A Reference Guide.

[5]  R. Fisher Dispersion on a sphere , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  S. Ghosal,et al.  Kullback Leibler property of kernel mixture priors in Bayesian density estimation , 2007, 0710.2746.

[7]  David B. Dunson,et al.  Nonparametric Bayes classification and hypothesis testing on manifolds , 2012, J. Multivar. Anal..

[8]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[9]  Ranjan K. Mallik,et al.  The pseudo-Wishart distribution and its application to MIMO systems , 2003, IEEE Trans. Inf. Theory.

[10]  D. Dunson,et al.  Nonparametric Bayesian density estimation on manifolds with applications to planar shapes. , 2010, Biometrika.

[11]  Gunnar Sparr Depth computations from polyhedral images , 1992, Image Vis. Comput..

[12]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[13]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[14]  Yuefeng Wu,et al.  The L1-consistency of Dirichlet mixtures in multivariate Bayesian density estimation , 2010, J. Multivar. Anal..

[15]  A. Barron Uniformly Powerful Goodness of Fit Tests , 1989 .

[16]  Michael,et al.  On a Class of Bayesian Nonparametric Estimates : I . Density Estimates , 2008 .

[17]  Grace L. Yang,et al.  On Bayes Procedures , 1990 .

[18]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[19]  G. S. Watson,et al.  ON THE CONSTRUCTION OF SIGNIFICANCE TESTS ON THE CIRCLE AND THE SPHERE , 1956 .

[20]  J. Ghosh,et al.  POSTERIOR CONSISTENCY OF DIRICHLET MIXTURES IN DENSITY ESTIMATION , 1999 .